Bloodstream infections are associated with considerable morbidity and health care costs. Molecular rapid diagnostic tests (mRDTs) are a promising complement to conventional laboratory methods for the diagnosis of bloodstream infections and may reduce the time to effective therapy among patients with bloodstream infections. The concurrent implementation of antimicrobial stewardship programs (ASPs) may reinforce these benefits. The aim of this study was to evaluate the cost-effectivenesses of competing strategies for the diagnosis of bloodstream infection alone or combined with an ASP. To this effect, we constructed a decision-analytic model comparing 12 strategies for the diagnosis of bloodstream infection. The main arms compared the use of mRDT and conventional laboratory methods with or without an ASP. The baseline strategy used as the standard was the use of conventional laboratory methods without an ASP, and our decision-analytic model assessed the cost-effectivenesses of 5 principal strategies: mRDT (with and without an ASP), mRDT with an ASP, mRDT without an ASP, conventional laboratory methods with an ASP, and conventional laboratory methods without an ASP. Furthermore, based on the availability of data in the literature, we assessed the cost-effectivenesses of 7 mRDT subcategories, as follows: PCR with an ASP, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis with an ASP, peptide nucleic acid fluorescent hybridization (PNA-FISH) with an ASP, a blood culture nanotechnology microarray system for Gram-negative bacteria (BC-GP) with an ASP, a blood culture nanotechnology microarray system for Gram-positive bacteria (BC-GN) with an ASP, PCR without an ASP, and PNA-FISH without an ASP. Our patient population consisted of adult inpatients in U.S. hospitals with suspected bloodstream infection. The time horizon of the model was the projected life expectancy of the patients. In a base-case analysis, cost-effectiveness was determined by calculating the numbers of bloodstream infection deaths averted, the numbers of quality-adjusted life years gained, and incremental cost-effectiveness ratios (ICERs). In a probabilistic analysis, uncertainty was addressed by plotting cost-effectiveness planes and acceptability curves for various willingness-to-pay thresholds. In the base-case analysis, MALDI-TOF analysis with an ASP was the most cost-effective strategy, resulting in savings of $29,205 per quality-adjusted life year and preventing 1 death per 14 patients with suspected bloodstream infection tested compared to conventional laboratory methods without an ASP (ICER, -$29,205/quality-adjusted life year). BC-GN with an ASP (ICER, -$23,587/quality-adjusted life year), PCR with an ASP (ICER, -$19,833/quality-adjusted life year), and PCR without an ASP (ICER, -$21,039/quality-adjusted life year) were other cost-effective options. In the probabilistic analysis, mRDT was dominant and cost-effective in 85.1% of simulations. Importantly, mRDT with an ASP had an 80.0% chance of being cost-effective, while mRDT without an ASP had only a 41.1% chance. In conclusion, our findings suggest that mRDTs are cost-effective for the diagnosis of patients with suspected bloodstream infection and can reduce health care expenditures. Notably, the combination of mRDT and an ASP can result in substantial health care savings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056844 | PMC |
http://dx.doi.org/10.1128/CMR.00095-17 | DOI Listing |
Curr Microbiol
January 2025
Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.
Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.
Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Microbiology, Armed Forces Institute of Pathology / National University of Medical Sciences, Rawalpindi, Pakistan.
Objective: To evaluate Chicago Sky Blue (CSB) stain, Calcofluor white (CW) stain, and Potassium Hydroxide (KOH) mount for rapid diagnosis of dermatomycosis, using fungal culture as the gold standard.
Study Design: Cross-sectional analytical study. Place and Duration of the Study: This study was conducted in the Department of Microbiology, Armed Forces Institute of Pathology / National University of Medical Sciences, Rawalpindi, Pakistan, from July 2023 to February 2024.
Nat Commun
January 2025
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
Polymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production.
View Article and Find Full Text PDFLight Sci Appl
January 2025
National and Local United Engineering Laboratory of Flat Panel Display Technology, College of Physics and Information Engineering, Fuzhou University, 350108, Fuzhou, China.
Multifunctional materials have attracted tremendous attention in intelligent and interactive devices. However, achieving multi-dimensional sensing capabilities with the same perovskite quantum dot (PQD) material is still in its infancy, with some considering it currently challenging and even unattainable. Drawing inspiration from neurons, a novel multifunctional CsPbBr/PDMS nanosphere is devised to sense humidity, temperature, and pressure simultaneously with unique interactive responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!