Modeling Late-Onset Sporadic Alzheimer's Disease through BMI1 Deficiency.

Cell Rep

Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montreal, QC H1T 2M4, Canada; Department of Neurosciences, University of Montreal, Montreal, QC Canada. Electronic address:

Published: May 2018

Late-onset sporadic Alzheimer's disease (AD) is the most prevalent form of dementia, but its origin remains poorly understood. The Bmi1/Ring1 protein complex maintains transcriptional repression of developmental genes through histone H2A mono-ubiquitination, and Bmi1 deficiency in mice results in growth retardation, progeria, and neurodegeneration. Here, we demonstrate that BMI1 is silenced in AD brains, but not in those with early-onset familial AD, frontotemporal dementia, or Lewy body dementia. BMI1 expression was also reduced in cortical neurons from AD patient-derived induced pluripotent stem cells but not in neurons overexpressing mutant APP and PSEN1. BMI1 knockout in human post-mitotic neurons resulted in amyloid beta peptide secretion and deposition, p-Tau accumulation, and neurodegeneration. Mechanistically, BMI1 was required to repress microtubule associated protein tau (MAPT) transcription and prevent GSK3beta and p53 stabilization, which otherwise resulted in neurodegeneration. Restoration of BMI1 activity through genetic or pharmaceutical approaches could represent a therapeutic strategy against AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2018.04.097DOI Listing

Publication Analysis

Top Keywords

late-onset sporadic
8
sporadic alzheimer's
8
alzheimer's disease
8
bmi1 deficiency
8
bmi1
7
modeling late-onset
4
disease bmi1
4
deficiency late-onset
4
disease prevalent
4
prevalent form
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!