Population genomic data can be used to infer historical effective population sizes (Ne), which help study the impact of past climate changes on biodiversity. Previous genome sequencing of one individual of the common bottlenose dolphin Tursiops truncatus revealed an unusual, sharp rise in Ne during the last glacial, raising questions about the reliability, generality, underlying cause, and biological implication of this finding. Here we first verify this result by additional sampling of T. truncatus. We then sequence and analyze the genomes of its close relative, the Indo-Pacific bottlenose dolphin T. aduncus. The two species exhibit contrasting demographic changes in the last glacial, likely through actual changes in population size and/or alterations in the level of gene flow among populations. Our findings suggest that even closely related species can have drastically different responses to climatic changes, making predicting the fate of individual species in the ongoing global warming a serious challenge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063294PMC
http://dx.doi.org/10.1093/molbev/msy108DOI Listing

Publication Analysis

Top Keywords

population genomic
8
contrasting demographic
8
demographic changes
8
bottlenose dolphin
8
changes
5
population
4
genomic analysis
4
analysis reveals
4
reveals contrasting
4
changes closely
4

Similar Publications

Rare cancer survivorship research funding at the National Institutes of Health (NIH), 2017 to 2023.

Cancer Causes Control

January 2025

Office of Cancer Survivorship, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA.

Purpose: Rare cancers are defined as those for which there are less than 15 cases per 100,000 in the population annually. While much progress in detection and treatment has been made over the past decade for many rare cancers, less progress has been made in understanding survivorship needs. The objective of this study was to characterize the National Institutes of Health (NIH) cancer survivorship grant portfolio focused on rare cancers and to identify gaps specific to this area of science.

View Article and Find Full Text PDF

Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide.

View Article and Find Full Text PDF

Background: As the prevalence of osteoporotic fractures increases, impacting the health of the aging population significantly, understanding the genetic link between chronic diseases such as primary biliary cholangitis (PBC) and osteoporosis (OP) is crucial. Despite existing research, the direct genetic relationship between these conditions remains unclear.

Materials And Methods: This study used a two-sample Mendelian randomization approach, drawing on the largest available genome-wide association studies.

View Article and Find Full Text PDF

The degree to which evolution repeats itself has implications regarding the major forces driving evolution and the potential for evolutionary biology to be a predictive (versus solely historical) science. To understand the factors that control evolutionary repeatability, we experimentally evolved four replicate hybrid populations of sunflowers at natural sites for up to 14 years and tracked ancestry across the genome. We found that there was very strong negative selection against introgressed ancestry in several chromosomes, but positive selection for introgressed ancestry in one chromosome.

View Article and Find Full Text PDF

Macrophages play a crucial role in the immune response during allograft rejection in organ transplantation. Therefore, our study aimed to explore the genomic features of macrophages in mouse heart transplants and use single-cell RNA sequencing to investigate Galectin-9 (Gal-9, Lgals9), a lectin that can mediate the activation and differentiation of immune cells through ligand-receptor interactions, and the effects of its regulation in transplantation. We discovered a new subset of macrophages called "Myoz2+ macrophages", which specifically expressed genes related to myocardial contraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!