The striking number of human and murine immunodeficiency disorders which map to the X chromosome suggests that genes localized on this chromosome must have important roles in lymphocyte development. At least seven distinct disorders in the human and two in the mouse disrupt lymphocyte maturation, particularly that of B cells, at characteristic stages. As functional genes mapping to the X chromosome in one mammal are found on the X chromosome in all other mammals, the same genes regulating lymphocyte development are expected to be found on the X chromosome in mouse and man. Investigations into the possible mechanisms of these X-linked disorders have been hampered by the lack of molecular probes for the genes or gene products affected; because of this, and the possibility of correlating one or more of the several hundred B- or T-cell-specific genes with a specific mutation, we surveyed 15 different B- and T-cell-specific cDNA clones for localization to the X chromosome. We report here the characterization of one of these murine cDNA clones, which hybridizes with a large, X-linked gene family, designated XLR (X-linked, lymphocyte-regulated). We show that the XLR gene family is closely linked to the X-linked immunodeficiency described in the CBA/N mouse strain (xid), by restriction fragment length polymorphism (RFLP) analysis of DNA from mice congeneic for xid. This finding, together with data on the expression of the XLR locus in B cells, indicates that this gene family either includes the locus defined by the xid mutation or is adjacent to it in a gene complex which may be important in lymphocyte differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/314369a0 | DOI Listing |
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.
Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).
Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.
J Pathol
January 2025
Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, MD, USA.
Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages.
View Article and Find Full Text PDFMol Inform
January 2025
Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Muenster, Germany.
Primary carnitine deficiency (PCD) is a rare autosomal recessive genetic disorder caused by missense mutations in the SLC22A5 gene encoding the organic carnitine transporter novel type 2 (OCTN2). This study investigates the structural consequences of PCD-causing mutations, focusing on the N32S variant. Using an alpha-fold model, molecular dynamics simulations reveal altered interactions and dynamics suggesting potential mechanistic changes in carnitine transport.
View Article and Find Full Text PDFPlant Divers
November 2024
Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
The angiosperm family Elaeagnaceae comprises three genera and . 100 species distributed mainly in Eurasia and North America. Little family-wide phylogenetic and biogeographic research on Elaeagnaceae has been conducted, limiting the application and preservation of natural genetic resources.
View Article and Find Full Text PDFBiotechnol Notes
December 2024
Centre for Molecular Biology, Central University of Jammu, Rahya Suchani (Bagla), Jammu & Kashmir, India.
The amidases (EC 3.5.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!