The driving forces for the phase transitions of ABX hybrid organic-inorganic perovskites have been limited to the octahedral tilting, order-disorder, and displacement. Now, a complex structural phase transition has been explored in a HOIP, [CH NH ][Mn(N ) ], based on structural characterizations and ab initio lattice dynamics calculations. This unusual first-order phase transition between two ordered phases at about 265 K is primarily driven by changes in the collective atomic vibrations of the whole lattice, along with concurrent molecular displacements and an unusual octahedral tilting. A significant entropy difference (4.35 J K  mol ) is observed between the low- and high-temperature structures induced by such atomic vibrations, which plays a main role in driving the transition. This finding offers an alternative pathway for designing new ferroic phase transitions and related physical properties in HOIPs and other hybrid crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201803176DOI Listing

Publication Analysis

Top Keywords

phase transition
12
hybrid organic-inorganic
8
phase transitions
8
octahedral tilting
8
atomic vibrations
8
unusual phase
4
transition
4
transition driven
4
driven vibrational
4
vibrational entropy
4

Similar Publications

Background And Objectives: Structural and functional changes in the intramyocardial microcirculation increase the risk of myocardial infarction (MI). This study investigated intramyocardial perivascular fibrosis and pro-fibrotic cellular transitions in deceased acute and subacute MI patients to explore their involvement in the pathogenesis of MI.

Methods: Left ventricular tissue (LV) was obtained from the infarction area of autopsied patients with acute-phase MI (3-6 h;  = 24), subacute-phase MI (5-14 days;  = 12), and noninfarcted controls ( = 14).

View Article and Find Full Text PDF

While reversible information encryption and decryption are readily achievable with hydrogels, this process presents a significant challenge when applied to elastic polymer films. This is due to the inherent chemical stability of anhydrous polymer films which significantly increases the difficulty of information writing. In this study, we propose a solvent-free radical polymerization method for chemical patterning on the elastic film of poly(styrene-butadiene-styrene) (SBS).

View Article and Find Full Text PDF

Nanomechanical Characterization of an Antiferromagnetic Topological Insulator.

Nano Lett

January 2025

Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States.

The antiferromagnetic topological insulator MnBiTe (MBT) exhibits an ideal platform for investigating unique topological and magnetic properties. While the transport characteristics of magnetic phase transitions in the MBT materials have been extensively studied, the understanding of their mechanical properties and magneto-mechanical coupling remains limited. Here, we utilize nanoelectromechanical systems to probe the intrinsic magnetism in MBT thin flakes through magnetostrictive coupling.

View Article and Find Full Text PDF

Dielectric nanocomposites have garnered significant interest owing to their potential applications in energy storage. However, achieving high energy density (U) and charge/discharge efficiency (η) remains a challenge in their fabrication. In this paper, core-shell structured BaTiO@Polyvinylpyrrolidone (BT@PVP) nanoparticles are prepared, and incorporated into a semi-crystalline polyvinylidene fluoride (PVDF) matrix.

View Article and Find Full Text PDF

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!