Flavivirus NS5 RNA-dependent RNA polymerase (RdRp) is an important drug target. Whilst a number of allosteric inhibitors have been described for Hepatitis C virus RdRp, few have been described for DENV RdRp. In addition, compound screening campaigns have not yielded suitable leads for this enzyme. Using fragment-based screening via X-ray crystallography, we identified a biphenyl acetic acid fragment that binds to a novel pocket of the dengue virus (DENV) RdRp, in the thumb/palm interface, close to its active site (termed "N pocket"). Structure-guided optimization yielded nanomolar inhibitors of the RdRp de novo initiation activity, with low micromolar EC in DENV cell-based assays. Compound-resistant DENV replicons exhibited amino acid mutations that mapped to the N pocket. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors and provides a significant opportunity for rational design of novel therapeutics against this proven antiviral target.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-981-10-8727-1_14DOI Listing

Publication Analysis

Top Keywords

denv rdrp
12
rna-dependent rna
8
rna polymerase
8
rdrp
6
denv
5
discovery potent
4
potent non-nucleoside
4
inhibitors
4
non-nucleoside inhibitors
4
inhibitors dengue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!