Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10653-018-0127-7 | DOI Listing |
Environ Geochem Health
January 2025
College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China.
With the advancement of ecological and environmental protection construction, the research on the modification of expansive soil using environmentally friendly polymers can make up for the harm to the ecological environment caused by traditional modification. Mechanical and microscopic properties of modified expansive soils were analyzed through indoor tests. The results showed that the liquid limit and plasticity index decreased by 52.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Central South University, Changsha, 410075, China.
Using potentiometric testing, we investigated the zeta potential of shield muck curing materials' particle surfaces, varying the concentration of metal ion complex. We analyzed the microscopic characteristics of shield muck curing products by using the electron microscopy, revealing the impact of metal ion complex on curing. Results showed that the metal ion complex significantly reduces the surface zeta potential of shield muck and conventional curing materials, with cement showing the most substantial effect, followed by shield muck, calcium carbonate, and calcium sulfate.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
The severe contamination of the plasticiser dibutyl phthalate (DBP) in agriculture soils is often accompanied by a decrease in nutrient utilisation. Though the combined application of a variety of microorganisms can simultaneously address the problems of soil contamination and nutrient deprivation, the activity and function of microorganisms can be severely inhibited by DBP, and studies on their protection under DBP contamination are almost non-existent. In this study, a compound bacterial agent KPSB was prepared by optimising with FeO-modified biochar loaded with DBP-degrading bacterium Enterobacterium sp.
View Article and Find Full Text PDFSci Total Environ
January 2025
USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America. Electronic address:
Outbreaks of infectious diseases involving depopulation of animals require on-farm practices to stage carcasses when final disposal methods are unavailable. The current study assessed various materials and techniques for containing carcasses to minimize leachate and biological substances. The tested materials included tarps, soil, corn stover (CS), and lime, while the methods involved covers, chemical additives, barriers, and containment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!