Baicalein inhibits osteosarcoma cell proliferation and invasion through the miR‑183/Ezrin pathway.

Mol Med Rep

Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China.

Published: July 2018

Osteosarcoma (OS), a common and primary malignant bone tumor, is characterized by highly aggressive potency. Baicalein, a bioactive flavone isolated from Scutellaria baicalensis Georgi, has been shown to inhibit the progression of numerous tumors, including OS. However, the mechanisms by which baicalein protects against OS are still largely unknown. The results of the present study showed that administration of baicalein significantly inhibited the proliferation, migration and invasion and promoted apoptosis in MG‑63 and Saos‑2 cells. Ezrin was identified as a target gene of microRNA (miR)‑183. MG‑63 and Saos‑2 cells treated with baicalein exhibited increased miR‑183 levels and decreased Ezrin expression. Importantly, miR‑183 inhibition and Ezrin overexpression abolished the effects of baicalein on MG‑63 and Saos‑2 cell proliferation, migration, invasion and apoptosis. Taken together, these findings suggest that baicalein inhibits the proliferation, migration and invasion and induces apoptosis in OS cells by activating the miR‑183/Ezrin pathway, revealing a novel mechanism underlying anti‑OS effects of baicalein.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2018.9036DOI Listing

Publication Analysis

Top Keywords

proliferation migration
12
migration invasion
12
mg‑63 saos‑2
12
baicalein
8
baicalein inhibits
8
cell proliferation
8
mir‑183/ezrin pathway
8
saos‑2 cells
8
effects baicalein
8
inhibits osteosarcoma
4

Similar Publications

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

Background/objectives: Colorectal cancer (CRC) is characterized by a high rate of both incidence and mortality, and its treatment outcomes are often affected by recurrence and drug resistance. Ferroptosis, an iron-dependent programmed cell death mechanism triggered by lipid peroxidation, has recently gained attention as a potential therapeutic target. Graphene oxide (GO), known for its oxygen-containing functional groups, biocompatibility, and potential for functionalization, holds promise in cancer treatment.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) represents an aggressive form of breast cancer with few available therapeutic options. Chemotherapy, particularly with drugs like doxorubicin (DOX), remains the cornerstone of treatment for this challenging subtype. However, the clinical utility of DOX is hampered by adverse effects that escalate with higher doses and drug resistance, underscoring the need for alternative therapies.

View Article and Find Full Text PDF

The Chansu injection (CSI), a sterile aqueous solution derived from Chansu, is applied in clinical settings to support antitumor and anti-radiation treatments. CSI's principal active components, bufadienolides (≥90%), demonstrate potential effects on pancreatic cancer (PDAC), but their underlying mechanisms remain unclear. This study aimed to elucidate the antitumor effects and pathways associated with CSI in PDAC.

View Article and Find Full Text PDF

Repurposing Osimertinib and Gedatolisib for Glioblastoma Treatment: Evidence of Synergistic Effects in an In Vitro Phenotypic Study.

Pharmaceuticals (Basel)

December 2024

Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.

Glioblastoma is a malignant tumor with a poor prognosis for the patient due to its high lethality and limited chemotherapy available. Therefore, from the point of view of chemotherapy treatment, glioblastoma can be considered an unmet medical need. This has led to the investigation of new drugs for monotherapy or associations, acting by synergistic pharmacological mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!