Cerium-based redox flow batteries (RFBs) are very attractive for highly efficient energy storage applications with industrial-scale storage capacity. However, the development of active, stable, and earth-abundant catalysts for cerium redox reactions with sluggish kinetics remains a major challenge. Herein, for the first time, two-dimensional (2D) nanostructured architectures were used to design and fabricate efficient and stable electrocatalysts from earth-abundant components toward the Ce(iv)/Ce(iii) redox reaction. A novel WO/GF hybrid architecture (WGF) built from WO nanowall arrays (NWAs) anchored on graphite felt (GF) surfaces was prepared for cerium-based RFBs. This unique hybrid exhibits superior electrocatalytic performance since the vertical nanowall arrays display open and ordered structures that ensure full exposure of the active sites toward electrolytes, which allows direct and full contact of every nanowall with the electrolyte. As an electrode for cerium redox reactions, this WGF electrode exhibits a 42.1% and 32.0% increase in energy efficiency as compared with that of pristine GF and acid-treated GF at a high charge/discharge rate of 30 mA cm. Moreover, the long-term cycling performance confirms the superior durability of the as-prepared WGF. This study suggests that the use of 2D nanostructures combined with vertical array microstructures is a promising strategy for efficient electrocatalysts toward cerium redox reactions with scale-up potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr01345d | DOI Listing |
ACS Appl Mater Interfaces
December 2024
College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China.
Composition-adjustable semiconductor nanomaterials have garnered significant attention due to their controllable bandgaps and electronic structures, providing alternative opportunities to regulate photoelectric properties and develop the corresponding multifunction optoelectronic devices. Nevertheless, the large-scale integration of semiconductor nanomaterials into practical devices remains challenging. Here, we report a synthesis strategy for the well-aligned horizontal CdSSe ( = 0-1) nanowall arrays, which are guided grown on an annealed M-plane sapphire using chemical vapor deposition (CVD) approaches.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., Saratov, 410054, Russia. Electronic address:
ACS Appl Mater Interfaces
November 2024
Department of Physics, Rajiv Gandhi University, Doimukh, Arunachal Pradesh 791112, India.
In low-dimensional material systems, augmented physical and chemical properties may be witnessed through a unique morphological evolution. Here, we report the development of an optimized nanowall network of ZnO for the fabrication of a flexible single-electrode triboelectric nanogenerator (STENG)-based tactile and gesture sensors. The chemically grown nanowall network with an adequate pore area endows superior triboelectric output (current ∼0.
View Article and Find Full Text PDFSmall
December 2024
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India.
Transition metal dichalcogenides, particularly MoS, are acknowledged as a promising cathode material for aqueous rechargeable zinc metal batteries (ARZMBs). Nevertheless, its lack of hydrophilicity, poor electrical conductivity, significant restacking, and restricted interlayer spacing translate into inadequate capacity and rate performance. Herein, the unique porous structure and additional functional groups present in holey graphene oxide (hGO) are taken advantage of to dictate the vertical growth pattern of oxygen-doped MoS nanowalls (O-MoS/NW) over the hGO surface.
View Article and Find Full Text PDFPolymers (Basel)
July 2024
Advanced Materials Institute, School of Materials Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
Developing a reasonable design of a lithiophilic artificial solid electrolyte interphase (SEI) to induce the uniform deposition of Li ions and improve the Coulombic efficiency and energy density of batteries is a key task for the development of high-performance lithium metal anodes. Herein, a high-performance separator for lithium metal anodes was designed by the in situ growth of a metal-organic framework (MOF)-derived transition metal sulfide array as an artificial SEI on polypropylene separators (denoted as CoS-PP). The high ionic conductivity and excellent morphology provided a convenient transport path and fast charge transfer kinetics for lithium ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!