Structural changes of cells during lipid enrichment and after solvent exposure.

Data Brief

CNRS, SATIE, Ecole Normale Supérieure Paris Saclay, Université Paris-Saclay, 61 av du Pdt Wilson, 94230 Cachan, France.

Published: April 2018

Data are related to Confocal Laser Scanning Microscopy (CLSM) observations of lipid-enriched cells under different conditions. Firstly, the impact of stress conditions (nitrogen starvation) on the cell wall structure is assessed. Secondly is described the effect of solvents, in the context of lipid extraction, on the microalga's cell, particularly its lipid droplets, in the perspective of understanding the mechanisms behind solvent extraction of lipids. Furthermore, the role of the cell wall as a barrier to the solvent extraction action is highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966586PMC
http://dx.doi.org/10.1016/j.dib.2018.02.042DOI Listing

Publication Analysis

Top Keywords

cell wall
8
solvent extraction
8
structural changes
4
changes cells
4
cells lipid
4
lipid enrichment
4
enrichment solvent
4
solvent exposure
4
exposure data
4
data confocal
4

Similar Publications

Despite years of progress in biotechnology, altering the genetic makeup of many plant species, especially their plastids, remains challenging. The existence of a cell wall poses a significant obstacle to the effectual transportation of biomolecules. Developing efficient methods to introduce genes into plant cells and organelles without causing harm is an ongoing area of research.

View Article and Find Full Text PDF

A periplasmic protein modulates the proteolysis of peptidoglycan hydrolases to maintain cell wall homeostasis in .

Proc Natl Acad Sci U S A

January 2025

Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Bacterial cell wall assembly and remodeling require activities of peptidoglycan (PG) hydrolases as well as PG synthases. In particular, the activity of DD-endopeptidases, which cleave the 4-3 peptide crosslinks in PG, is essential for PG expansion in gram-negative bacteria. Maintaining optimal levels of DD-endopeptidases is critical for expanding PG without compromising its integrity.

View Article and Find Full Text PDF

In vitro stretch modulates mitochondrial dynamics and energy metabolism to induce smooth muscle differentiation in mesenchymal stem cells.

FASEB J

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.

View Article and Find Full Text PDF

Light provides the necessary energy for plant photosynthesis, which allows plants to produce organic matter and energy conversion, during plant growth and development. Light provides material energy to plants as the basis for cell division and differentiation, chlorophyll synthesis, tissue growth and stomatal movement, and light intensity, photoperiod, and light quality play important roles in these processes. There are several regulatory mechanisms involved in sugar metabolism in plants, and light, as one of the regulatory factors, affects cell wall composition, starch granules, sucrose synthesis, and vascular bundle formation.

View Article and Find Full Text PDF

Bovine genital leptospirosis (BGL) is a silent and chronic reproductive syndrome associated with reproductive failures that result in animal suffering and substantial financial losses for farmers. Important aspects of the interactions between the host and the pathogen during chronic leptospirosis have been well described in the kidney, but little is known about the genital infection mechanisms. The present study sheds light on the pathophysiology of BGL based on comparative genomic analysis of renal versus genital isolates of genomes, an endemic species on Latin America.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!