That biodiversity declines with latitude is well known, but whether a metacommunity process is behind this gradient has received limited attention. We tested the hypothesis that dispersal limitation is progressively replaced by mass effects with increasing latitude, along with a series of related hypotheses. We explored these hypotheses by examining metacommunity structure in stream invertebrate metacommunities spanning the length of New Zealand's two largest islands (∼1,300 km), further disentangling the role of dispersal by deconstructing assemblages into strong and weak dispersers. Given the highly dynamic nature of New Zealand streams, our alternative hypothesis was that these systems are so unpredictable (at different stages of post-flood succession) that metacommunity structure is highly context dependent from region to region. We rejected our primary hypotheses, pinning this lack of fit on the strong unpredictability of New Zealand's dynamic stream ecosystems and fauna that has evolved to cope with these conditions. While local community structure turned over along this latitudinal gradient, metacommunity structure was highly context dependent and dispersal traits did not elucidate patterns. Moreover, the emergent metacommunity types exhibited no trends, nor did the important environmental variables. These results provide a cautionary tale for examining singular metacommunities. The considerable level of unexplained contingency suggests that any inferences drawn from one-off snapshot sampling may be misleading and further points to the need for more studies on temporal dynamics of metacommunity processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971837PMC
http://dx.doi.org/10.7717/peerj.4898DOI Listing

Publication Analysis

Top Keywords

metacommunity structure
12
stream invertebrate
8
structure highly
8
highly context
8
context dependent
8
metacommunity
6
latitudinal gradients
4
gradients exist
4
exist zealand
4
zealand stream
4

Similar Publications

The trait-based partitioning of species plays a critical role in biodiversity-ecosystem function relationships. This niche partitioning drives and depends on community structure, yet this link remains elusive in the context of a metacommunity, where local community assembly is dictated by regional dispersal alongside local environmental conditions. Hence, elucidating the coupling of niche partitioning and community structure needs spatially explicit studies.

View Article and Find Full Text PDF

Stream periphyton is an ideal study system for explaining how dispersal shapes community patterns. Few studies have tried to investigate periphyton metacommunities at the reach scale, and studies comparing local versus upstream periphyton propagule sources are lacking. We aimed to address these knowledge gaps by disentangling environmental constraints and dispersal sources, including dispersal hypotheses related to periphyton functional guilds.

View Article and Find Full Text PDF

Multi-species mutualistic interactions are ubiquitous and essential in nature, yet they face several threats, many of which have been exacerbated in the Anthropocene era. Understanding the factors that drive the stability and persistence of mutualism has become increasingly important in light of global change. Although dispersal is widely recognized as a crucial spatially explicit process in maintaining biodiversity and community structure, knowledge about how the dispersal of mutualists contributes to the persistence of mutualistic systems remains limited.

View Article and Find Full Text PDF
Article Synopsis
  • Ecological theory suggests a link between species turnover in communities (β-diversity) and genetic turnover in populations within species.
  • By analyzing genomic data from 15 freshwater mussel species across seven rivers, researchers found strong connections between β-diversity and genetic differentiation.
  • Results indicated that similar factors influence both community species composition and genetic connections within populations, highlighting the parallel processes that govern freshwater mussel metacommunities.
View Article and Find Full Text PDF

Beta diversity of macrophyte life forms: Responses to local, spatial, and land use variables in Amazon aquatic environments.

Sci Total Environ

January 2025

Laboratório de Ecologia de Produtores Primários (ECOPRO), Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 01, 66075-110, Belém, Pará, Brazil.

Aquatic macrophytes encompass a highly diverse group of plants with different strategies, niche requirements, and dispersion capacities. Therefore, macrophyte life forms can respond distinctly to environmental factors. We analyzed whether emergent/amphibious, floating-leaves/rooted submerged, and free-floating/free-submerged macrophytes respond differently to local, spatial, and land use variables in ponds and streams of the Amazon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!