The aim of the present study was to investigate the expression and function of microRNA (miR)-371-5p in nasopharyngeal carcinoma (NPC). The levels of miR-371-5p were analyzed in nasopharyngeal epithelium tissues, NPC tissues, human NPC cell lines and NP69 cells using reverse transcription-quantitative polymerase chain reaction analysis. The association between the level of miR-371-5p and clinicopathological variables was also investigated. Cell proliferation was determined using an MTT assay, and the activities of cell metastasis were determined using wound healing and Transwell migration assays. To assess whether miR-371-5p can combine with the targeting sequence of B-cell lymphoma 2 (BCL2) mRNA or not, a luciferase activity assay was performed. An animal experiment was used to examine the effect of miR-371-5p on the development of NPC. The results revealed that the expression of miR-371-5p was reduced in NPC samples and NPC cells. The level of miR-371-5p was associated with clinical stage and distant metastasis in patients with NPC, and was inversely associated with the protein level of BCL-2 in NPC tissues. The upregulation of miR-371-5p reduced cell growth, migration and invasion, and inhibited carcinoma growth through targeting BCL2 mRNA. Taken together, the regulation of miR-371-5p was shown to offer potential as a novel treatment approach for NPC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958798PMC
http://dx.doi.org/10.3892/ol.2018.8481DOI Listing

Publication Analysis

Top Keywords

mir-371-5p
10
npc
9
nasopharyngeal carcinoma
8
targeting bcl2
8
npc tissues
8
level mir-371-5p
8
bcl2 mrna
8
mir-371-5p reduced
8
mir-371-5p suppresses
4
suppresses proliferative
4

Similar Publications

Despite its prevalence, preeclampsia (PE) remains unclear as to its etiology. Here, we aimed to investigate the mechanisms regulating differences in the gene expression of zinc-finger protein 516 (ZNF516) in the placenta. The expression of the placental ZNF516 gene and its association with critical clinical markers were verified, and a rigorous correlation analysis was conducted.

View Article and Find Full Text PDF

Background: Salinomycin, an ionophore antibiotic, has a strong anti-cancer effect, inducing the apoptosis of cancer cells and cancer stem cells.

Objective: The aim of the study was to assess the influence of salinomycin on the expression profile of genes related to stemness and miRNA regulating their expression in endometrial cancer cells.

Methods: Endometrial cancer cells of cell line Ishikawa were exposed to salinomycin at concentrations in the range of 0.

View Article and Find Full Text PDF

Introduction: MicroRNA373 was highly expressed in many tumors including esophageal cancer. However, its molecular mechanism is still unclear, especially epigenetic modification, in esophageal squamous cell carcinoma (ESCC).

Methods: In this study, we investigated serum levels of the miR-371-373 cluster in ESCC patients before and after surgical removal, and further focused on the expression level of miR-373-3p in tumor tissues of ESCC patients and its target genes.

View Article and Find Full Text PDF

miRNA expression profiling regulates necroptotic cell death in hepatocellular carcinoma.

Int J Oncol

August 2018

Functional Genomics Laboratory, UOC Neurologia MNM, Department of Clinical and Experimental Medicine, University of Messina, I-98125 Messina, Italy.

Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and is among the leading causes of cancer-related mortality worldwide. Although the dysregulation of microRNAs (miRNAs or miRs) has often been reported in HCC, the precise molecular mechanisms by which miRNAs modulate the process of tumorigenesis and the behavior of cancer cells are not yet clearly understood. In this study, we identified a novel three‑miRNA signature, including miR‑371-5p, miR‑373 and miR‑543, that appears to orchestrate programmed cell necrosis in HCC by directly targeting the caspase‑8 gene (Casp‑8).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!