The effects of MC-3129, a synthetic cyclohexene derivative, on cell viability and apoptosis have been investigated in human leukemia cells. Exposure of leukemia cells to MC-3129 led to the inhibition of cell viability and induction of apoptosis through the dephosphorylation and mitochondrial translocation of cofilin. A mechanistic study revealed that interruption of the RhoA/ROCK1/PTEN/PI3K/Akt signaling pathway plays a crucial role in the MC-3129-mediated dephosphorylation and mitochondrial translocation of cofilin and induction of apoptosis. Our in vivo study also showed that the MC-3129-mediated inhibition of the tumor growth in a mouse leukemia xenograft model is associated with the interruption of ROCK1/PTEN/PI3K/Akt signaling and apoptosis. Molecular docking suggested that MC-3129 might activate the RhoA/ROCK1 pathway by targeting LPAR2. Collectively, these findings suggest a hierarchical model, in which the induction of apoptosis by MC-3129 primarily results from the activation of RhoA/ROCK1/PTEN and inactivation of PI3K/Akt, leading to the dephosphorylation and mitochondrial translocation of cofilin, and culminating in cytochrome c release, caspase activation, and apoptosis. Our study reveals a novel role for RhoA/ROCK1/PTEN/PI3K/Akt signaling in the regulation of mitochondrial translocation of cofilin and apoptosis and suggests MC-3129 as a potential drug for the treatment of human leukemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974298 | PMC |
http://dx.doi.org/10.1038/s41419-018-0689-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!