The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence social functions in many mammals. In humans and rhesus macaques, OT delivered intranasally can promote prosocial behavior in certain contexts. Yet the precise neural mechanisms mediating these behavioral effects remain unclear. Here we show that treating a group of male macaque monkeys intranasally with aerosolized OT relaxes their spontaneous social interactions with other monkeys. OT reduces differences in social behavior between dominant and subordinate monkeys, thereby flattening the status hierarchy. OT also increases behavioral synchrony within a pair. Intranasal delivery of aerosolized AVP reproduces the effects of OT with greater efficacy. Remarkably, all behavioral effects are replicated when OT or AVP is injected focally into the anterior cingulate gyrus (ACCg), a brain area linked to empathy and other-regarding behavior. ACCg lacks OT receptors but is rich in AVP receptors, suggesting exogenous OT may shape social behavior, in part, via nonspecific binding. Notably, OT and AVP alter behaviors of both the treated monkey and his untreated partner, consistent with enhanced feedback through reciprocal social interactions. These findings bear important implications for use of OT in both basic research and as a therapy for social impairments in neurodevelopmental disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974023 | PMC |
http://dx.doi.org/10.1038/s41598-018-25607-1 | DOI Listing |
Animals (Basel)
December 2024
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA.
Canine-assisted interactions (CAIs) have been explored to offer therapeutic benefits to human participants in various contexts, from addressing cancer-related fatigue to treating post-traumatic stress disorder. Despite their widespread adoption, there are still unresolved questions regarding the outcomes for both humans and animals involved in these interactions. Previous attempts to address these questions have suffered from core methodological weaknesses, especially due to absence of tools for an efficient objective evaluation and lack of focus on the canine perspective.
View Article and Find Full Text PDFThe opioid epidemic is a pervasive health issue and continues to have a drastic impact on the United States. This is primarily because opioids cause respiratory suppression and the leading cause of death in opioid overdose is respiratory failure ( , opioid-induced respiratory depression, OIRD). Opioid administration can affect the frequency and magnitude of inspiratory motor drive by activating µ-opioid receptors that are located throughout the respiratory control network in the brainstem.
View Article and Find Full Text PDFNeural Netw
November 2024
Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan.
Hierarchically modular organization is a canonical network topology that is evolutionarily conserved in the nervous systems of animals. Within the network, neurons form directional connections defined by the growth of their axonal terminals. However, this topology is dissimilar to the network formed by dissociated neurons in culture because they form randomly connected networks on homogeneous substrates.
View Article and Find Full Text PDFNonlinear Dynamics Psychol Life Sci
January 2025
Marquette University, Milwaukee, WI.
Emergent phenomena exhibit interesting dynamics when considered individually. The present article examines two emergent processes that could be occurring simultaneously in an intense team interaction: the emergence of leaders and the emergence of autonomic synchrony within teams making dynamic decisions. In the framework of panarchy theory and related studies on complex systems, autonomic synchrony would be a fast dynamic that is shaped or controlled by leadership emergence, which is a slower dynamic.
View Article and Find Full Text PDFPhys Life Rev
December 2024
Community Healthcare Center Dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Complexity Science Hub, Metternichgasse 8, 1080 Vienna, Austria; Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea. Electronic address:
Synchrony in neuronal networks is crucial for cognitive functions, motor coordination, and various neurological disorders. While traditional research has focused on pairwise interactions between neurons, recent studies highlight the importance of higher-order interactions involving multiple neurons. Both types of interactions lead to complex synchronous spatiotemporal patterns, including the fascinating phenomenon of chimera states, where synchronized and desynchronized neuronal activity coexist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!