The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027522 | PMC |
http://dx.doi.org/10.3390/ph11020054 | DOI Listing |
Biol Res
January 2025
Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil.
Bees are essential pollinators that contribute to maintaining biodiversity and increasing agricultural production. However, by foraging on agricultural crops, bees may become contaminated with compounds used for pest control. In this study, we exposed bee (Apis mellifera L.
View Article and Find Full Text PDFNat Chem
January 2025
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
Nitroarenes are readily accessible bulk chemicals and can serve as versatile starting materials for a series of synthetic reactions. However, due to the inertness of the C-NO bond, the direct denitrative substitution reaction with unactivated nitroarenes remains challenging. Chemists rely on sequential reduction and diazotization followed by the Sandmeyer reaction or the nucleophilic aromatic substitution of activated nitroarenes to realize nitro group transformations.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as -substitution SAr reactions, have been extensively explored.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Polymer and Dye Technology, Lodz University of Technology Stefanowskiego 16 Lodz 90537 Poland.
This study investigates the structure-property relationships of a series of phenylhydrazones bearing various electron-donating and electron-withdrawing substituents, such as methoxy, dimethylamino, morpholinyl, hydroxyl, chloro, bromo, and nitro groups. The compounds were synthesized, and their structures were characterized using single-crystal X-ray diffraction, powder X-ray diffraction, FTIR spectroscopy, NMR spectroscopy, and DSC. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and UV-Vis spectroscopy were employed to elucidate the complex interplay between the molecular skeleton, substituents, and the resulting photophysical properties.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China.
In this work, two energetic compounds 5-(3-iminio-6-nitro-3H-[1,2,4]triazolo[4,3-][1,2,4]triazol-2(7)-yl)tetrazol-1-ide () and 3-nitro-7-(2-tetrazol-5-yl)-7-[1,2,4]triazolo[4,3-][1,2,4]triazol-6-amine () were successfully synthesized from the same compound 3,6,7-triamino-7-[1,2,4]triazolo[4,3-][1,2,4]triazolium (). Both compounds contain three explosophores, amino, nitro, and tetrazole, on the fused ring. Through different functional group arrangements, possesses higher density and good thermal stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!