Objective: Human amniotic epithelial cells (hAECs) are a novel source of stem cells and have immunomodulatory effects on both the innate and adoptive immune system. hAECs can differentiate into multiple cell lineages that make them a suitable cell source for regenerative medicine. These cells express multiple toll-like receptors (TLRs) and respond to various TLR ligands. This study aimed to evaluate the effect of lipopolysaccharide (LPS), a TLR4 ligand, on the level of immunomodulatory and immunostimulatory factors of hAECs.
Results: Our results indicated that LPS had the ability to up-regulate the expression of prostaglandin E2 synthase and transforming growth factor-beta1 in hAECs. However, there was no change in the level of interleukin-1beta, interleukin-6 and interleukin-10 in hAECs when were stimulated with LPS. In addition, we observed tumor necrosis factor-alpha was only expressed at very low level in some of hAECs samples which its expression was independent of the effects of LPS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975661 | PMC |
http://dx.doi.org/10.1186/s13104-018-3411-9 | DOI Listing |
Cytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFClin Immunol
January 2025
Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China. Electronic address:
The imbalance between Tregs and proinflammatory Th17 cells in children with biliary atresia (BA) causes immune damage to cholangiocytes. Dimethyl fumarate (DMF), an immunomodulatory drug, regulates the Treg/Th17 balance in diseases like multiple sclerosis (MS). This study explores DMF's effect on Treg/Th17 balance in BA and its potential mechanism.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Liver fibrosis is a persistent damage repair response triggered by various etiological factors, resulting in an excessive accumulation of extracellular matrix (ECM). Activated hepatic stellate cells (HpSCs) are the primary source of ECM proteins. Therefore, specifically targeting HpSCs has become a crucial approach for treating liver fibrosis.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Health Science Center, Ningbo University, Ningbo, China. Electronic address:
Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disorder strongly associated with antigen presentation by dendritic cells (DCs). In MG, mucosal tolerance is linked to increased expression of TGF-β mRNA in monocytes. Additionally, monocytic myeloid-derived suppressor cells (M-MDSCs) exhibit negative immunomodulatory effects by suppressing autoreactive T and B cells.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
Introduction: We conducted a panoramic analysis of GBN5 expression and prognosis in 33 cancers, aiming to deepen the systematic understanding of GBN5 in cancer.
Materials And Methods: We employed a multi-omics approach, including transcriptomic, genomic, proteomic, single-cell cytomic, spatial transcriptomic, and genomic data, to explore the prognostic value and potential oncogenic mechanisms of GBN5 across pan-cancers from multiple perspectives.
Results: We found that GBN5 was differentially expressed in multiple tumors and showed early diagnostic value.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!