Post-traumatic stress disorder (PTSD) is a stress-related mental disorder which occurs following exposure to traumatic events. A number of brain neuroimaging studies have revealed that PTSD patients have reduced volume and abnormal functions in the hippocampus and the amygdala. However, the pathogenesis of abnormalities in certain brain regions, as induced by PTSD, remains unclear. Recent studies, using the single prolonged stress (SPS) model, an animal model of PTSD, have found that abnormal apoptosis in certain brain regions, including the hippocampus, the amygdala, and the medial prefrontal cortex (mPFC); these areas are closely associated with emotion and cognition. In this review, we summarize the mechanism of apoptosis in SPS rats, including the endoplasmic reticulum (ER) and the mitochondria pathways. For the ER pathway, three individual pathways: PERK, IRE1, and ATF6 showed different roles on apoptosis and neuroprotection. Three key factors are thought to be involved in the mitochondrial pathway and PTSD-induced apoptosis: corticosteroid receptors, apoptosis-related factors, and anti-apoptosis factors. We have investigated the role of these factors and have attempted to identify which factors of the pathways are more focused towards neuronal protection, and which are more direct towards apoptosis. We also discussed the role of autophagy and the specific differences between autophagy and apoptosis in SPS rats. Finally, we discussed emerging researches related to anti-apoptosis treatment, including PERK inhibitors, IRE1 inhibitors, and metformin; collectively, these were exciting, but limited, This review provides a summary of the current understanding of apoptosis in SPS rats and the potential anti-apoptosis treatment strategies for PTSD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psyneuen.2018.05.015 | DOI Listing |
J Chin Med Assoc
January 2025
Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
Sci Rep
October 2024
Biomedical Sciences and Engineering, Koç University, 34450, Istanbul, Turkey.
Corneal crosslinking (CXL) is a widely applied technique to halt the progression of ectatic diseases through increasing the thickness and mechanical stiffness of the cornea. This study investigated the biocompatibility and efficiency of a novel CXL procedure using ruthenium and blue light in rat corneas and evaluated parameters important for clinical application. To perform the CXL procedure, the corneal epithelium of rats was removed under anaesthesia, followed by the application of a solution containing ruthenium and sodium persulfate (SPS).
View Article and Find Full Text PDFApoptosis
December 2024
Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases.
View Article and Find Full Text PDFJ Fungi (Basel)
June 2024
Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
is an edible and medicinal mushroom widely used in folk medicine for treating cancer and gastric diseases. This study aimed to investigate the physicochemical properties of different sulfated polysaccharide (SPS) components (F1, F2, and F3) isolated from and evaluate their activity against MDA-MB-231 breast cancer cell proliferation. Compared with F1 and F3, the results showed that F2 exhibited the most potent anti-proliferative activity on MDA-MB-231 cells, which could be attributed to the sulfate and protein contents, molecular weight, and monosaccharide composition.
View Article and Find Full Text PDFInt J Biol Macromol
June 2024
Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China. Electronic address:
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!