In this study, degradation affinities of 14 antibiotics and one metabolite were determined in batch experiments. A modelling framework was applied to decrypt potential ranges of abiotic, biotic and photolytic degradation coefficients. In detail, we performed batch experiments with three different sewages in the dark at 7 °C and 22 °C. Additionally, we conducted further batch experiments with artificial irradiation and different dilutions of the sewage at 30 °C - de novo three different sewages were used. The batch experiments were initially spiked with a stock solution with 14 antibiotics and one metabolite to increase background concentrations by 1 μg L for each compound. The final antibiotic concentrations were sub-inhibitory with regard to sewage bacteria. The here presented modelling framework based on the Activated Sludge Model No. 3 in combination with adsorption and desorption processes. The model was calibrated with monitored standard sewage compounds before antibiotic degradation rates were quantified. The model decrypted ranges of abiotic, biotic and photolytic degradation coefficients. In detail, six antibiotics were not abiotic degradable at 7 °C, five antibiotics not at 22 °C and only 2 antibiotics at 30 °C. Finally, nine antibiotics were not significantly biodegradable at 7 °C and 22 °C. The model determined the link between adsorption characteristics and biodegradation rates. In detail, the rate was significantly affected by the bio-solid partition coefficient and the duration until adsorption was balanced. All antibiotics and the metabolite were photolytic degradable. In general, photolytic degradation was the most efficient elimination pathway of presented antibiotics except for the given metabolite and penicillin antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2018.05.074DOI Listing

Publication Analysis

Top Keywords

antibiotics metabolite
20
batch experiments
20
photolytic degradation
16
abiotic biotic
12
biotic photolytic
12
antibiotics
10
modelling framework
8
ranges abiotic
8
degradation coefficients
8
coefficients detail
8

Similar Publications

Houtt. Transformed Hairy Root Cultures as an Effective Platform for Producing Phenolic Compounds with Strong Bactericidal Properties.

Int J Mol Sci

January 2025

Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.

Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.

View Article and Find Full Text PDF

cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions.

View Article and Find Full Text PDF

From the 1950s to the present, the main tool for obtaining fungal industrial producers of secondary metabolites remains the so-called classical strain improvement (CSI) methods associated with multi-round random mutagenesis and screening for the level of target products. As a result of the application of such techniques, the yield of target secondary metabolites in high-yielding (HY) strains was increased hundreds of times compared to the wild-type (WT) parental strains. However, the events that occur at the molecular level during CSI programs are still unknown.

View Article and Find Full Text PDF

Exploring the Impact of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Mycophenolic Acid Through In Vitro and In Vivo Experiments.

Int J Mol Sci

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.

Mycophenolic acid (MPA) is a commonly used immunosuppressant. In the human body, MPA is metabolized into mycophenolic acid 7-O-glucuronide (MPAG) and mycophenolic acid acyl-glucuronide (AcMPAG) mainly through liver glucuronidation, which involves UDP-glucuronosyltransferase (UGTs) and transfer proteins. Research has indicated that the pharmaceutical excipient PEG400 can impact drug processes in the body, potentially affecting the pharmacokinetics of MPA.

View Article and Find Full Text PDF

Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!