N-Methyladenosine (mA) represents the most prevalent internal modification in mammalian mRNAs. Emerging evidences suggest that mA modification is profoundly implicated in many biological processes, including cancer development. However, limited knowledge is available about the functional importance of mA in lung cancer. In this study, by data mining The Cancer Genome Atlas (TCGA) database, we first identified fat mass- and obesity-associated protein (FTO) as a prognostic factor for lung squamous cell carcinoma (LUSC). Then we showed that FTO, but not other mA modification genes including METTL3, METTL14 and ALKBH5, was the major dysregulated factor responsible for aberrant mA modification in LUSC. Loss-of-function studies suggested that FTO knockdown effectively inhibited cell proliferation and invasion, while promoted cell apoptosis of L78 and NCI-H520 cells. Furthermore, overexpression of FTO, but not its mutant form, facilitated the malignant phenotypes of CHLH-1 cells. Mechanistically, FTO enhanced MZF1 expression by reducing mA levels and mRNA stability in MZF1 mRNA transcript, leading to oncogenic functions. Taken together, our study demonstrates the functional importance of FTO in the tumor progression of LUSC and provides a potential therapeutic target for LUSC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.05.175DOI Listing

Publication Analysis

Top Keywords

tumor progression
8
lung squamous
8
squamous cell
8
cell carcinoma
8
mzf1 expression
8
fto
6
demethylase fto
4
fto facilitates
4
facilitates tumor
4
progression lung
4

Similar Publications

Mir-615-5p inhibits cervical cancer progression by targeting TMIGD2.

Hereditas

January 2025

Obstetrics and Gynecology Medical Centre, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No.105, Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China.

Background: Cervical cancer (CC) is a prevalent gynecological malignancy, contributing to a substantial number of fatalities among women. MicroRNAs (miRNAs) have emerged as promising biomarkers with significant potential for the early detection and prognosis of CC.

Objective: This study aimed to explore the clinical significance and biological role of miR-615-5p in CC, with the goal of identifying novel biomarkers for this disease.

View Article and Find Full Text PDF

Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.

View Article and Find Full Text PDF

SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis.

Biomark Res

January 2025

Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.

Background: Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment.

Methods: The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

Metabolic reprogramming within the tumor microenvironment (TME) is a hallmark of cancer and a crucial determinant of tumor progression. Research indicates that various metabolic regulators form a metabolic network in the TME and interact with immune cells, coordinating the tumor immune response. Metabolic dysregulation creates an immunosuppressive TME, impairing the antitumor immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!