A derivation is given for the dependence of the rate constant of the reaction of OH radicals with a spherical macromolecule on the rate by which such radicals are scavenged by the medium. Experiments were carried out with oxygenated solutions of dilute single-stranded phi X174 DNA at 10(-4)M NaCl (large reaction radius of DNA) or at 10(-4)M NaCl + MgCl2 (small reaction radius) with t-butanol as a scavenger. The results of these experiments cannot be described by simple second-order competition, but can be explained by the predicted dependence of the rate constant of the reaction OH + DNA on the concentration of t-butanol. Furthermore, the results show that only part of the reactions of OH radicals with phi X174 DNA leads to DNA inactivation, and that even at zero scavenger concentration OH radicals are scavenged by other molecules than DNA, presumably impurities remaining even after careful purification of the DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09553008514550451 | DOI Listing |
Int J Biol Macromol
December 2024
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China. Electronic address:
PLoS One
October 2024
Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America.
Bacteriophage ϕX174 has been widely used as a model organism to study fundamental processes in molecular biology. However, several aspects of ϕX174 gene regulation are not fully resolved. Here we construct a computational model for ϕX174 and use the model to study gene regulation during the phage infection cycle.
View Article and Find Full Text PDFWater Res
January 2025
School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:
Crystal facet engineering has emerged as a promising approach to enhance photocatalytic activity of semiconductors by preferentially accumulating charge carriers (electrons and holes) on specific facets. This facilitates efficient electron and hole transfer across the semiconductor/cocatalyst interface, enabling their transport to the cocatalyst surface for redox reactions. In this study, three Cu-doped TiO nanorods with small, medium, and large ratios of reductive {110} to oxidative {111} facets were synthesized (namely Cu-TiO-SR, Cu-TiO-MR, and Cu-TiO-LR, respectively).
View Article and Find Full Text PDFWater Res
November 2024
Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil. Electronic address:
Virology
September 2024
School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia. Electronic address:
Bacteriophage ϕX174 is a small icosahedral virus of the Microviridae with a rapid replication cycle. Previously, we found that in ϕX174 infections of Escherichia coli, the most highly upregulated host proteins are two small heat shock proteins, IbpA and IbpB, belonging to the HSP20 family, which is a universally conserved group of stress-induced molecular chaperones that prevent irreversible aggregation of proteins. Heat shock proteins were found to protect against ϕX174 lysis, but IbpA/B have not been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!