A mathematical model imitating transport of inert gases in the system of microcirculation under increased pressures was constructed. It has been shown that saturation of microareas nucleus of the brain cortex of average dimensions proceeds in about 90 sec. Effect of the blood flow velocity, gases tension in arterial blood and density of the capillary net on the dynamics of mass transfer of gases in a tissue was investigated.

Download full-text PDF

Source

Publication Analysis

Top Keywords

transport inert
8
inert gases
8
[mathematical model
4
model dynamics
4
dynamics transport
4
gases
4
gases microcirculatory
4
microcirculatory system]
4
system] mathematical
4
mathematical model
4

Similar Publications

Although fullerene bisadducts are promising electron-transporting materials for tin halide perovskite solar cells, they are generally synthesized as a mixture of isomeric products that require a complicated separation process. Here, we introduce a phenylene-bridged bis(pyrrolidino)fullerene, Bis-PC, which forms only a single isomer due to geometrical restriction. When used in a tin perovskite solar cell with a PEAFASnI (PEA: phenylethylammonium and FA: formamidinium) light absorption layer, the resulting open-circuit voltage ( ) was 0.

View Article and Find Full Text PDF

Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.

View Article and Find Full Text PDF

The rapid advancement of the Internet of Things has created a substantial demand for portable gas sensors. Nevertheless, the development of gas sensors that can fulfill the demanding criteria of high sensitivity and rapid response time continues to pose a considerable challenge. Herein, an in-situ anchoring strategy is proposed to construct CNTs@MOF heterostructure to establish strong electronic coupling and charge relocation for enhancing the monitoring capabilities of isopropanol (freshness markers for fruits) at room temperature.

View Article and Find Full Text PDF

Transferrin Protein Corona-Targeted Codelivery of Tirapazamine and IR820 Facilitates Efficient PDT-Induced Hypoxic Chemotherapy on 4T1 Breast Cancer.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Protein corona (PC) formation confers novel biological properties to the original nanomaterial, impeding its uptake and targeting efficacy in cells and tissues. Although many studies discussing PC formation have focused on inert proteins that may inhibit the function of nanomaterials, some functional plasma proteins with intrinsic targeting capabilities can also be adsorbed to the surface of nanomaterials, with active ligand properties to improve the targeting ability. In this approach, nanomaterials are surface-engineered to promote the adsorption of specific functional plasma proteins that are directly targeted to transport nanomaterials to the target site.

View Article and Find Full Text PDF

Organelle-Level Trafficking and Metabolism Kinetics for Redox-Responsive Paclitaxel Prodrug Nanoparticles Characterized by Experimental and Modeling Analysis.

ACS Nano

December 2024

Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Redox-responsive self-assembled prodrug nanoparticles have received extensive attention for their high loading efficiency and environmentally responsive properties. However, the intracellular metabolism and transportation kinetics were poorly understood, which limited the rational design and development of this delivery system. Herein, tetraphenylporphyrin-paclitaxel (TxP) prodrugs with thioether, disulfide, and dicarbon linkers (TsP, TssP, and TccP) were synthesized and self-assembled as nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!