Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C-H/N-H Activation with Internal Alkynes.

J Am Chem Soc

Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen, Tammannstraße 2 , 37077 , Göttingen , Germany.

Published: June 2018

Electrochemical oxidative C-H/N-H activations have been accomplished with a versatile cobalt catalyst in terms of [4 + 2] annulations of internal alkynes. The electro-oxidative C-H activation manifold proved viable with an undivided cell setup under exceedingly mild reaction conditions at room temperature using earth-abundant cobalt catalysts. The electrochemical cobalt catalysis prevents the use of transition metal oxidants in C-H activation catalysis, generating H as the sole byproduct. Detailed mechanistic studies provided strong support for a facile C-H cobaltation by an initially formed cobalt(III) catalyst. The subsequent alkyne migratory insertion was interrogated by mass spectrometry and DFT calculations, providing strong support for a facile C-H activation and the formation of a key seven-membered cobalta(III) cycle in a regioselective fashion. Key to success for the unprecedented use of internal alkynes in electrochemical C-H/N-H activations was represented by the use of N-2-pyridylhydrazides, for which we developed a traceless electrocleavage strategy by electroreductive samarium catalysis at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b03521DOI Listing

Publication Analysis

Top Keywords

internal alkynes
12
c-h activation
12
alkynes electrochemical
8
c-h/n-h activations
8
room temperature
8
strong support
8
support facile
8
facile c-h
8
electroremovable traceless
4
traceless hydrazides
4

Similar Publications

Reversible Bimetallic Inhibition to Modulate Selectivity During Catalysis.

J Am Chem Soc

December 2024

Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC). Avenida Américo Vespucio 49, 41092 Sevilla, Spain.

Bimetallic complexes have demonstrated a great ability to enhance the activity of monometallic systems for bond activation and catalysis. In this work, we explore the opposite approach: using a second metal to passivate the activity of another by reversible bimetallic inhibition. To do so we have synthesized a family of nine electrophilic gold complexes of formula Au(PR)(NTf) ([NTf] = [N(SOCF)]) that can act as inhibitors in the semihydrogenation of terminal and internal alkynes catalyzed by the iconic iridium Vaska complex IrCl(CO)(PPh).

View Article and Find Full Text PDF

Visible-Light-Mediated Radical -Hydroboration of Alkynes with NHC Borane.

J Org Chem

December 2024

School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.

Although the radical hydroboration of alkenes with N-heterocyclic carbene (NHC) borane is well documented, the radical hydroboration of alkynes, especially terminal alkynes, remains challenging. Herein, a photoredox-catalyzed radical -hydroboration of alkynes with NHC borane has been developed, which provided various alkenyl boron compounds in moderate to good yields. This protocol exhibits a broad substrate scope, as both internal and terminal alkynes were compatible.

View Article and Find Full Text PDF

Ligand-Controlled Regioselective Alkoxycarbonylation of Nonfunctionalized Unsymmetric Internal Alkynes.

Chemistry

December 2024

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Pd-catalyzed alkoxycarbonylation of internal alkynes provides a straightforward access to α,β-disubstituted acrylic esters. Compared with the well-established regioselective alkoxycarbonylation of terminal alkynes, the regioselective hydrocarboxylation of non-functionalized unsymmetric internal alkynes was more challenging owing to the delicate differences of properties between the two substituents. Herein, by using either monophosphine ligand based on 2,3-dihydrobenzo[d][1,3]oxaphosphole motif or bidentate ligand Ph-Phox, the regioselective alkoxycarbonylations of aryl-aryl, aryl-alkyl and alkyl-alkyl disubstituted alkynes were achieved, giving a diversity of trisubstituted α,β-unsaturated carboxylic esters with moderate to excellent yields and high regioselectivity.

View Article and Find Full Text PDF

We disclosed an efficient protocol for regioselective C6 C-H/N-H activation/annulation reaction of indole-7-carboxamides with alkynes to synthesize highly substituted pyrrolo[3,2-h]isoquinolin-9-one derivatives. Under optimized reaction conditions, electron-deficient and electron-rich internal alkynes reacted efficiently with various indole-7-carboxamides to deliver desired products in good to excellent yields. The synthetic utility of the product is demonstrated by its selective oxidation to the corresponding isatin derivative.

View Article and Find Full Text PDF

Skipped dienes are among the most prevalent motifs in a vast array of natural products, medicinal compounds, and fatty acids. Herein, we disclose a straightforward one-step reductive protocol under Co/PC for the synthesis of diverse 1,4-dienes with excellent regio- and stereoselectivity. The protocol employs allenyl or allyl carbonate as π-allyl source, allowing for the direct synthesis of skipped diene with a broad range of alkynes including terminal alkynes, propargylic alcohols, and internal alkynes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!