In this paper, an alkaline nickel oxide hydroxide/zinc (NiOOH/Zn) battery featuring a cellulose matrix separator between electrodes is presented. The metallic electrodes and the paper separator are inserted in a layer-by-layer assembly that provides mechanical stability to the system resulting in a lightweight and easy-to-use device. The battery was optimized for the amount of NiOOH-ink used at the cathode (11.1 mg/cm ) and thickness of the paper membrane separating the electrodes (360 μm). The battery was able to function using a small volume (75 μL) of 1.5 M potassium hydroxide (KOH) producing a maximum voltage, current density, and power density of 1.35 ± 0.05 V, 10.62 ± 0.57 mA/cm², and 0.56 ± 0.01 mW/cm², respectively. The system displayed a maximum current of 23.9 mA and a maximum power of 1.26 mW. Moreover, four batteries connected in series were able to power a small flameless candle for approximately 22 min. This work has potential in fulfilling the demands for short-term and lightweight power supplies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.201800181 | DOI Listing |
J Pharm Anal
November 2024
BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi, 10326, Republic of Korea.
To enhance the efficiency of vaccine manufacturing, this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles (mRNA-LNP). Different mRNA-LNP formulations ( = 24) were developed using an I-optimal design, where machine learning tools (XGBoost/Bayesian optimization and self-validated ensemble (SVEM)) were used to optimize the process and predict lipid mix ratio. The investigation included material attributes, their respective ratios, and process attributes.
View Article and Find Full Text PDFBiomicrofluidics
January 2025
School of Mechanical Engineering, Pusan National University, Busan, South Korea.
Monitoring platelet aggregation is crucial for predicting thrombotic diseases and identifying the risk of bleeding or resistance to antiplatelet drugs. This study developed a microfluidic device to measure platelet activation with high sensitivity. By controlling exposure time through repeated reinjections, the device enables the detection of subtle changes in platelet activity influenced by lifestyle factors, such as alcohol consumption.
View Article and Find Full Text PDFSci Rep
January 2025
Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL).
View Article and Find Full Text PDFChem Soc Rev
January 2025
School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.
The inspirations from nature always enlighten us to develop advanced science and technology. To survive in complicated and harsh environments, plants and animals have evolved remarkable capabilities to control fluid transfer sophisticated designs such as wettability contrast, oriented micro-/nano-structures, and geometry gradients. Based on the bioinspired structures, the on-surface fluid manipulation exhibits spontaneous, continuous, smart, and integrated performances, which can promote the applications in the fields of heat transfer, microfluidics, heterogeneous catalysis, water harvesting, Although fluid manipulating interfaces (FMIs) have provided plenty of ideas to optimize the current systems, a comprehensive review of history, classification, fabrication, and integration focusing on their interfacial chemistry and asymmetric structure is highly required.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!