A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-Descriptor Read Across (MuDRA): A Simple and Transparent Approach for Developing Accurate Quantitative Structure-Activity Relationship Models. | LitMetric

Multi-Descriptor Read Across (MuDRA): A Simple and Transparent Approach for Developing Accurate Quantitative Structure-Activity Relationship Models.

J Chem Inf Model

Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina, Chapel Hill , North Carolina 27599 , United States.

Published: June 2018

Multiple approaches to quantitative structure-activity relationship (QSAR) modeling using various statistical or machine learning techniques and different types of chemical descriptors have been developed over the years. Oftentimes models are used in consensus to make more accurate predictions at the expense of model interpretation. We propose a simple, fast, and reliable method termed Multi-Descriptor Read Across (MuDRA) for developing both accurate and interpretable models. The method is conceptually related to the well-known kNN approach but uses different types of chemical descriptors simultaneously for similarity assessment. To benchmark the new method, we have built MuDRA models for six different end points (Ames mutagenicity, aquatic toxicity, hepatotoxicity, hERG liability, skin sensitization, and endocrine disruption) and compared the results with those generated with conventional consensus QSAR modeling. We find that models built with MuDRA show consistently high external accuracy similar to that of conventional QSAR models. However, MuDRA models excel in terms of transparency, interpretability, and computational efficiency. We posit that due to its methodological simplicity and reliable predictive accuracy, MuDRA provides a powerful alternative to a much more complex consensus QSAR modeling. MuDRA is implemented and freely available at the Chembench web portal ( https://chembench.mml.unc.edu/mudra ).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917006PMC
http://dx.doi.org/10.1021/acs.jcim.8b00124DOI Listing

Publication Analysis

Top Keywords

qsar modeling
12
multi-descriptor read
8
read mudra
8
developing accurate
8
quantitative structure-activity
8
structure-activity relationship
8
types chemical
8
chemical descriptors
8
built mudra
8
mudra models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!