Background: The progression of chronic kidney disease is accompanied by multi-organ disorders, among which cardiovascular diseases have the status of a serious clinical problem. The body surface potential mapping (BSPM) technique is a non-invasive method which enables the detection of pathological changes in the bioelectrical activity of the heart.

Objectives: The aim of this study was to identify possible disturbances in the intraventricular conduction system in peritoneally dialyzed children.

Material And Methods: Cardiac examination consisted of 12-lead electrocardiography, echocardiography and BSPM. The evaluation of disturbances in the cardio-electrical field was performed by comparing the qualitative and quantitative features of the heart potentials on the isopotential map.

Results: Data was collected from 10 children treated with automatic peritoneal dialysis (APD) (mean age: 13.6 ±2.3 years) and 26 healthy children. The maps of dialyzed children showed a shift in positive isopotentials toward the left lower part of the thorax, while negative values were observed in its left upper part. A distribution of lines on the isopotential maps revealed disturbances in the stimulation spread within the heart ventricles, especially within the anterior fascicle of the left bundle branch of His.

Conclusions: Intraventricular conduction disturbances were observed in the left bundle branch of His in the peritoneally dialyzed children. The body surface potential mapping was a more sensitive method in identifying the early stage of conduction disturbances within the heart ventricles than 12-lead electrocardiography. Further research involving a larger population of dialyzed children is planned.

Download full-text PDF

Source
http://dx.doi.org/10.17219/acem/69255DOI Listing

Publication Analysis

Top Keywords

intraventricular conduction
12
dialyzed children
12
disturbances intraventricular
8
peritoneal dialysis
8
body surface
8
surface potential
8
potential mapping
8
peritoneally dialyzed
8
12-lead electrocardiography
8
observed left
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!