Carbon nanothreads are a new type of one-dimensional sp-carbon nanomaterial formed by slow compression and decompression of benzene. We report characterization of the chemical structure of C-enriched nanothreads by advanced quantitative, selective, and two-dimensional solid-state nuclear magnetic resonance (NMR) experiments complemented by infrared (IR) spectroscopy. The width of the NMR spectral peaks suggests that the nanothread reaction products are much more organized than amorphous carbon. In addition, there is no evidence from NMR of a second phase such as amorphous mixed sp/sp-carbon. Spectral editing reveals that almost all carbon atoms are bonded to one hydrogen atom, unlike in amorphous carbon but as is expected for enumerated nanothread structures. Characterization of the local bonding structure confirms the presence of pure fully saturated "degree-6" carbon nanothreads previously deduced on the basis of crystal packing considerations from diffraction and transmission electron microscopy. These fully saturated threads comprise between 20% and 45% of the sample. Furthermore, C-C spin exchange experiments indicate that the length of the fully saturated regions of the threads exceeds 2.5 nm. Two-dimensional C-C NMR spectra showing bonding between chemically nonequivalent sites rule out enumerated single-site thread structures such as polytwistane or tube (3,0) but are consistent with multisite degree-6 nanothreads. Approximately a third of the carbon is in "degree-4" nanothreads with isolated double bonds. The presence of doubly unsaturated degree-2 benzene polymers can be ruled out on the basis of C-C NMR with spin exchange rate constants tuned by rotational resonance and H decoupling. A small fraction of the sample consists of aromatic rings within the threads that link sections with mostly saturated bonding. NMR provides the detailed bonding information necessary to refine solid-state organic synthesis techniques to produce pure degree-6 or degree-4 carbon nanothreads.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b03733DOI Listing

Publication Analysis

Top Keywords

carbon nanothreads
16
fully saturated
12
chemical structure
8
carbon
8
amorphous carbon
8
spin exchange
8
c-c nmr
8
nanothreads
7
nmr
7
structure carbon
4

Similar Publications

Saturated sp-carbon nanothreads (CNTh) have garnered significant interest due to their predicted high Young's modulus and thermal conductivity. While the incorporation of heteroatoms into the central ring has been shown to influence the formation of CNTh and yield chemically homogeneous products, the impact of pendant groups on the polymerization process remains underexplored. In this study, we investigate the pressure-induced polymerization of phenol, revealing two phase transitions occurring below 0.

View Article and Find Full Text PDF

Pressure-induced polymerization (PIP) of aromatic molecules has emerged as an effective method for synthesizing various carbon-based materials. The selection of suitable functionalized molecular precursors is crucial for obtaining the desired structures and functions. In this work, 1,4-difluorobenzene (1,4-DFB) was selected as the building block for PIP.

View Article and Find Full Text PDF

The high-pressure synthesis of double-core nanothreads derived from pseudo-stilbene crystals represents a captivating approach to isolate within the thread chromophores or functional groups without altering its mechanical properties. These entities can be effectively utilized to finely tune optical properties or as preferential sites for functionalization. Bibenzyl, being isostructural with other members of this class, represents the ideal system for building co-crystals from which we can synthesize double-core nanothreads wherein bridging chromophores, such as the azo or ethylene moieties, are embedded in the desired concentration within a fully saturated environment.

View Article and Find Full Text PDF

Synthesis and Post-Processing of Chemically Homogeneous Nanothreads from 2,5-Furandicarboxylic Acid.

Angew Chem Int Ed Engl

March 2023

Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC-20015, USA.

Compared with conventional, solution-phase approaches, solid-state reaction methods can provide unique access to novel synthetic targets. Nanothreads-one-dimensional diamondoid polymers formed through the compression of small molecules-represent a new class of materials produced via solid-state reactions, however, the formation of chemically homogeneous products with targeted functionalization represents a persistent challenge. Through careful consideration of molecular precursor stacking geometry and functionalization, we report here the scalable synthesis of chemically homogeneous, functionalized nanothreads through the solid-state polymerization of 2,5-furandicarboxylic acid.

View Article and Find Full Text PDF

Pressure induced modification of the electronic properties of stilbene by two-photon spectroscopy.

J Chem Phys

January 2023

LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, Sesto Fiorentino, I-50019 Firenze, Italy.

Carbon nanothreads are the most exciting carbon based nanomaterials recently discovered. Obtained by compressing aromatics around 20 GPa, they are characterized by potentially exceptional mechanical properties. The reaction mechanisms have been partly elucidated through computational studies and x-ray diffraction experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!