Phosphorus incorporation into carbon can greatly modify its chemical, electronic, and thermal stability properties. To date this has been limited to low levels of phosphorus. Now a simple, large-scale synthesis of carbon-nitrogen-phosphorus (CNP) materials is reported with tunable elemental composition, leading to excellent thermal stability to oxidation and fire-retardant properties. The synthesis consists of using monomers that are liquid at high temperatures as the reaction precursors. The molten-state stage leads to good monomer miscibility and enhanced reactivity at high temperatures and formation of CNP materials with up to 32 wt % phosphorus incorporation. The CNP composition and fire-retardant properties can be tuned by modifying the starting monomers ratio and the final calcination temperature. The CNP materials demonstrate great resistance to oxidation and excellent fire-retardant properties, with up to 90 % of the materials preserved upon heating to 800 °C in air.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201805279DOI Listing

Publication Analysis

Top Keywords

cnp materials
12
fire-retardant properties
12
phosphorus incorporation
8
thermal stability
8
high temperatures
8
materials
5
synthesis carbon-nitrogen-phosphorous
4
carbon-nitrogen-phosphorous materials
4
materials unprecedented
4
unprecedented high
4

Similar Publications

Hydrothermal carbonization (HTC) of carbohydrates has been reported as a sustainable and green technique to produce carbonaceous micro- and nano-materials. These materials have been developed for several applications, including catalysis, separation science, metal ion adsorption and nanomedicine. Carbon nanoparticles (CNPs) obtained through HTC are particularly interesting for the latter application since they exhibit photothermal properties when irradiated with near-infrared (NIR) light, act as an antioxidant by scavenging reactive oxygen species (ROS), and present good colloidal stability and biocompatibility.

View Article and Find Full Text PDF

Oral Delivery of miR146a Conjugated to Cerium Oxide Nanoparticles Improves an Established T Cell-Mediated Experimental Colitis in Mice.

Pharmaceutics

December 2024

Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.

Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).

View Article and Find Full Text PDF

Potassium-iodine batteries show great promise as alternatives for next-generation battery technology, owing to their high power density and environmental sustainability. Nevertheless, they suffer from polyiodide dissolution and the multistep electrode fabrication process, which leads to severe performance degradation and limitations in mass-market adoption. Herein, we report a simple "solution-adsorption" strategy for scale-up production of TiC(OH)-wrapped carbon nanotube paper (CNP), as an economic host for strengthening the iodine encapsulation.

View Article and Find Full Text PDF

Bacterial infections in wounds, especially in patients with chronic conditions like diabetic wounds, pose significant treatment challenges. Addressing the susceptibility to infection is crucial, and the development of functional dressings to prevent bacterial invasion has proven a promising strategy. Cellulose nanocrystals (CNCs), derived from bio-resources and functioning as nanoparticles (NPs), were modified with poly[2-(tert-butylamino) ethyl methacrylate] (PTA) through atom transfer radical polymerization (ATRP) to create CNCs-graft-PTA NPs (CNPs).

View Article and Find Full Text PDF

Imidazopyridinium-Linked Covalent Organic Frameworks for Efficient Gold Recovery.

Small Methods

December 2024

CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China.

Covalent organic frameworks (COFs) with high surface areas and specialized binding sites garnered attention in the field of gold (Au) adsorption. The adsorption capacity mostly depends on the functional skeletons and porous structures, however, the roles of linkages have not been thoroughly explored. In this study, imidazopyridinium-linked COFs, specifically im-PYTA-PZDH-COF and im-PYTA-BPDH-COF were synthesized, to enhance gold adsorption efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!