A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Caffeine dosing strategies to optimize alertness during sleep loss. | LitMetric

Caffeine dosing strategies to optimize alertness during sleep loss.

J Sleep Res

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland.

Published: October 2018

Sleep loss, which affects about one-third of the US population, can severely impair physical and neurobehavioural performance. Although caffeine, the most widely used stimulant in the world, can mitigate these effects, currently there are no tools to guide the timing and amount of caffeine consumption to optimize its benefits. In this work, we provide an optimization algorithm, suited for mobile computing platforms, to determine when and how much caffeine to consume, so as to safely maximize neurobehavioural performance at the desired time of the day, under any sleep-loss condition. The algorithm is based on our previously validated Unified Model of Performance, which predicts the effect of caffeine consumption on a psychomotor vigilance task. We assessed the algorithm by comparing the caffeine-dosing strategies (timing and amount) it identified with the dosing strategies used in four experimental studies, involving total and partial sleep loss. Through computer simulations, we showed that the algorithm yielded caffeine-dosing strategies that enhanced performance of the predicted psychomotor vigilance task by up to 64% while using the same total amount of caffeine as in the original studies. In addition, the algorithm identified strategies that resulted in equivalent performance to that in the experimental studies while reducing caffeine consumption by up to 65%. Our work provides the first quantitative caffeine optimization tool for designing effective strategies to maximize neurobehavioural performance and to avoid excessive caffeine consumption during any arbitrary sleep-loss condition.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jsr.12711DOI Listing

Publication Analysis

Top Keywords

caffeine consumption
16
sleep loss
12
neurobehavioural performance
12
caffeine
9
dosing strategies
8
timing amount
8
amount caffeine
8
maximize neurobehavioural
8
sleep-loss condition
8
psychomotor vigilance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!