Dealing with indistinguishable particles and their entanglement.

Philos Trans A Math Phys Eng Sci

Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, 90123 Palermo, Italy.

Published: July 2018

Here, we discuss a particle-based approach to deal with systems of many identical quantum objects (particles) that never employs labels to mark them. We show that it avoids both methodological problems and drawbacks in the study of quantum correlations associated with the standard quantum mechanical treatment of identical particles. The core of this approach is represented by the multiparticle probability amplitude, whose structure in terms of single-particle amplitudes we derive here by first principles. To characterize entanglement among the identical particles, this new method uses the same notions, such as partial trace, adopted for non-identical ones. We highlight the connection between our approach and second quantization. We also define spin-exchanged multipartite states which contain a generalization of W states to identical particles. We prove that particle spatial overlap plays a role in the distributed entanglement within multipartite systems and is responsible for the appearance of non-local quantum correlations.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2017.0317DOI Listing

Publication Analysis

Top Keywords

identical particles
12
particles
5
quantum
5
dealing indistinguishable
4
indistinguishable particles
4
particles entanglement
4
entanglement discuss
4
discuss particle-based
4
particle-based approach
4
approach deal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!