Stimuli-responsive materials are vital for addressing emerging demands in the advanced technology sector as well as current industrial challenges. Here, we report for the first time that coordinative integration of photoresponsive building blocks possessing photochromic spiropyran and diarylethene moieties within a rigid scaffold of metal-organic frameworks (MOFs) could control photophysics, in particular, cycloreversion kinetics, with a level of control that is not accessible in the solid state or solution. On the series of photoactive materials, we demonstrated for the first time that photoisomerization rates of photochromic compounds could be tuned within almost 2 orders of magnitude. Moreover, cycloreversion rates of photoresponsive derivatives could be modulated as a function of the framework structure. Furthermore, through MOF engineering we were able to achieve complete isomerization for coordinatively immobilized spiropyran derivatives, typically exhibiting limited photoswitching behavior in the solid state. For instance, spectroscopic analysis revealed that the novel monosubstituted spiropyran derivative grafted to the backbone of the MOF pillar exhibits a remarkable photoisomerization rate of 0.16 s, typical for cycloreversion in solution. We also applied the acquired fundamental principles toward mapping of changes in material properties, which could provide a pathway for monitoring material aging or structural deterioration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b02994 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China.
Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
The design of solid-state materials requests a thorough understanding of the structural preferences among plausible structure models. Since the bond energy contributes to the formation energy of a given structure model, it also is decisive to determine the nature of chemical bonding for a given material. In this context, we were motivated to explore the correlation between chemical bonding and structural distortions within the low-dimensional tellurium fragments in TbCuTe.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
Circularly polarized luminescence (CPL) and mechanochromic luminescence (MCL) have independently made substantial progress in recent years. However, the exploration of MCL in solid-state CPL materials, which holds practical significance, is still in its infancy. Herein, we report the MCL properties of readily accessible chiral pyrenylprolinamides bearing tert-butoxycarbonyl (Boc) or 2,2,2-trichloroethoxycarbonyl (Troc) groups.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.
Bioinspired supramolecular architectonics is attracting increasing interest due to their flexible organization and multifunctionality. However, state-of-the-art bioinspired architectonics generally take place in solvent-based circumstance, thus leading to achieving precise control over the self-assembly remains challenging. Moreover, the intrinsic difficulty of ordering the bio-organic self-assemblies into stable large-scale arrays in the liquid environment for engineering devices severely restricts their extensive applications.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent myoglobin (BsMb) and sperm whale myoglobin (SwMb).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!