Background/aims: Tff3 protein plays a well recognized role in the protection of gastrointestinal mucosa. The role of Tff3 in the metabolism is a new aspect of its function. Tff3 is one of the most affected liver genes in early diabetes and fatty liver rodent models. The aim of this study was to investigate the effect of Tff3 deficiency on lipid and carbohydrate metabolism and on markers of oxidative stress that accompanies metabolic deregulation.
Methods: Specific markers of health status were determined in sera of Tff3 deficient mice, including glucose level, functional glucose and insulin tolerance. Composition of fatty acids (FAs) was determined in liver and blood serum by using gas chromatography. Oxidative stress parameters were determined: lipid peroxidation level via determination of lipid hydroperoxide and thiobarbituric acid reactive substances (TBARS), antioxidative capacity (FRAP) and specific antioxidative enzyme activity. The expression of several genes and proteins related to the metabolism of lipids, carbohydrates and oxidative stress (CAT, GPx1, SOD2, PPARα, PPARγ, PPARδ, HNF4α and SIRT1) was determined.
Results: Tff3 deficient mice showed better glucose utilization in the glucose and insulin test. Liver lipid metabolism is affected and increased formation of small lipid vesicles is noticed. Formation of lipid droplets is not accompanied by increased liver oxidative stress, although expression/activity of monitored enzymes is deregulated when compared with wild type mice. Tff3 deficient mice exhibit reduced expression of metabolism relevant SIRT1 and PPARγ genes.
Conclusion: Tff3 deficiency affects the profile and accumulation of FAs in the liver, with no obvious oxidative stress increase, although expression/activity of monitored enzymes is changed as well as the level of SIRT1 and PPARγ protein. Considering the strong downregulation of liver Tff3 in diabetic/obese mice, presence in circulation and regulation by food/insulin, Tff3 is an interesting novel candidate in metabolism relevant conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000490039 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.
Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.
Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.
Front Biosci (Landmark Ed)
January 2025
HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary.
Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Cardiometabolic and Endocrine Institute, North Brunswick, NJ 08902, USA.
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.
Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!