Mangroves are coastal ecosystems of transition between terrestrial and marine environments, that have been particularly contaminated in the last decades. Organic compounds are part of these contaminants, which have increased in the environment due to industrial activities and accidental oil spills. These contaminants are toxic to higher organisms, but microorganisms can metabolize most of these compounds and thus offer a tool for bioremediation purposes. The aim of the present study was to characterize the microbial potential and activity for degradation of aromatic compounds in sediment samples from mangroves using metagenomic and metatranscriptomic approaches. Sediment samples were collected for DNA and RNA extraction from each of the mangrove sites: highly oil-impacted (Oil Mgv), anthropogenically impacted (Ant Mgv) and pristine (Prs Mgv) mangrove. Hydrocarbon concentrations in Oil Mgv sediments were higher than those observed in Ant Mgv and Prs Mgv. Genes and transcripts associated with aromatic compound degradation, particularly the meta and ortho-pathways, were more abundant in Oil Mgv and Ant Mgv suggesting that many of the aromatic compounds are being aerobically degraded by the microbiome in these sites. Functions involved in the degradation of aromatic compounds were also found in pristine site, although in lower abundance. Members of the genera Aromatoleum, Desulfococcus, Desulfatibacillum, Desulfitobacterium and Vibrio were actively involved in the detoxification of sediments affected by the oil spill. Results obtained from this study provided strong evidence that microbial degradation of aromatic compounds plays an active role in the biological response to mangrove sediment pollution and subsequent ecosystem recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2018.04.050DOI Listing

Publication Analysis

Top Keywords

aromatic compounds
16
degradation aromatic
12
oil mgv
12
ant mgv
12
sediment samples
8
mgv
8
prs mgv
8
compounds
6
oil
5
aromatic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!