Deposition of type I collage in ECM is an important property of various fibrotic diseases including breast cancer. The excessive expression of type I collagen contributes to the rigidity of cancer tissue and increases the mechanical stresses which facilitate metastasis and proliferation of cancer cells via the activation of TGF-β signaling pathway. The increased mechanical stresses also cause the compression of blood vessels and result in hypoperfusion and impaired drug delivery in cancer tissue. Additionally, type I collage functions as the ligand of α2β1-integrin and DDR1/2 receptors on the membrane of cancer cells to initiate signal transduction leading to metastasis. The expression of type I collage in cancer cells is previously shown to be inducible by TGF-β however the detailed mechanism by which the synthesis of type I collagen is regulated in breast cancer cells remains unclear. Herein, we report that MRTF-A, a co-activator of SRF, is important for the regulation of type I collagen gene COL1A1 in breast cancer cells. MRTF-A physically interacted with the promoter of COL1A1 to facilitate histone acetylation and RNA polymerase II recruitment. The RhoC-ROCK signaling pathway which controls the nuclear localization of MRTF-A regulated the transcription of COL1A1 in human breast cancer cells. TGF-β and Wnt signaling increased the expression of both MRTF-A and COL1A1. Furthermore, depletion of MRTF-A abolished the upregulation of COL1A1 in response to the TGF-β or Wnt signaling, indicating the importance of MRTF-A in the synthesis of type I collagen in breast cancer. Given the crucial roles of type I collagen in the formation of metastasis-prone and hypoperfusion microenvironment, MRTF-A would be a potential target for the development of anti-breast cancer activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2018.05.092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!