MRTF-A mediates the activation of COL1A1 expression stimulated by multiple signaling pathways in human breast cancer cells.

Biomed Pharmacother

Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China. Electronic address:

Published: August 2018

Deposition of type I collage in ECM is an important property of various fibrotic diseases including breast cancer. The excessive expression of type I collagen contributes to the rigidity of cancer tissue and increases the mechanical stresses which facilitate metastasis and proliferation of cancer cells via the activation of TGF-β signaling pathway. The increased mechanical stresses also cause the compression of blood vessels and result in hypoperfusion and impaired drug delivery in cancer tissue. Additionally, type I collage functions as the ligand of α2β1-integrin and DDR1/2 receptors on the membrane of cancer cells to initiate signal transduction leading to metastasis. The expression of type I collage in cancer cells is previously shown to be inducible by TGF-β however the detailed mechanism by which the synthesis of type I collagen is regulated in breast cancer cells remains unclear. Herein, we report that MRTF-A, a co-activator of SRF, is important for the regulation of type I collagen gene COL1A1 in breast cancer cells. MRTF-A physically interacted with the promoter of COL1A1 to facilitate histone acetylation and RNA polymerase II recruitment. The RhoC-ROCK signaling pathway which controls the nuclear localization of MRTF-A regulated the transcription of COL1A1 in human breast cancer cells. TGF-β and Wnt signaling increased the expression of both MRTF-A and COL1A1. Furthermore, depletion of MRTF-A abolished the upregulation of COL1A1 in response to the TGF-β or Wnt signaling, indicating the importance of MRTF-A in the synthesis of type I collagen in breast cancer. Given the crucial roles of type I collagen in the formation of metastasis-prone and hypoperfusion microenvironment, MRTF-A would be a potential target for the development of anti-breast cancer activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.05.092DOI Listing

Publication Analysis

Top Keywords

cancer cells
28
breast cancer
24
type collagen
20
cancer
12
type collage
12
mrtf-a
8
human breast
8
type
8
expression type
8
cancer tissue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!