A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of Photonic Bandgap Materials by Shifting Double Frameworks. | LitMetric

Fabrication of Photonic Bandgap Materials by Shifting Double Frameworks.

Chemistry

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P.R. China.

Published: November 2018

Biological organisms have evolved over millions of years to generate tremendously complex structures on a nanometer to micrometer scale. Among them, a range of three-dimensional (3D) biological photonic structures with minimal surface or constant mean curvature surfaces have been discovered in the wing scales of insects, attracting a great deal of interest because of their unique optical properties, such as structural color, antireflection, light collection, and photonic band gaps. Single-diamond and single-gyroid surface structures are considered to be excellent photonic crystals with complete band gaps. Although the corresponding bicontinuous architectures have been synthesized by self-assembly, single-framework structures are thermodynamically unfavorable and have been only achieved by physical fabrications and the alternating gyroid method. The production of materials derived from the thermodynamically stable double-framework structures provides a feasible solution for their chemical construction. This concept article highlights the significant progress in understanding 3D photonic structures by shifting double-frameworks to form low-symmetry structures, the physical properties of which can be greatly altered. Specifically, a complete photonic band gap can be achieved via a shifted double-diamond structure composed of materials with high dielectric contrast and high refractive index. We believe this concept will provide new insights in interdisciplinary research areas including the study of photonic structures, the self-assembly of amphiphilic molecules and the formation of biological architectures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201801767DOI Listing

Publication Analysis

Top Keywords

photonic structures
12
structures
8
photonic band
8
band gaps
8
photonic
6
fabrication photonic
4
photonic bandgap
4
bandgap materials
4
materials shifting
4
shifting double
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!