Rodents develop activity-based anorexia (ABA) when exposed to a restricted feeding schedule and allowed free access to a running wheel. These conditions lead to a life-threatening reduction in body weight. However, rodents exposed to only one of these conditions ultimately adapt to re-establish normal body weight. Although increased running coupled with reduction in voluntary food intake appear paradoxical under ABA conditions, ABA behavior is observed across numerous mammalian species. The ABA paradigm provides an animal model for anorexia nervosa (AN), an eating disorder with severe dysregulation of appetite-behavior. Subjects are singly housed with free access to a running wheel. Each day, the subject is offered food for a limited amount of time. During the course of the experiment, a subject's body weight decreases from high activity and low caloric intake. The duration of the study varies based on how long food is offered daily, the type of food offered, the strain of mouse, if drugs are being tested, and environmental factors. A lack of effective pharmacological treatments for AN patients, their low quality of life, high cost of treatment, and their high mortality rate indicate the urgency to further research AN. We provide a basic outline for performing ABA experiments with mice, offering a method to investigate AN-like behavior in order to develop novel therapies. This protocol is optimized for use in Balb/cJ mice, but can easily be manipulated for other strains, providing great flexibility in working with different questions, especially related to genetic factors of ABA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101185PMC
http://dx.doi.org/10.3791/57395DOI Listing

Publication Analysis

Top Keywords

body weight
12
activity-based anorexia
8
free access
8
access running
8
running wheel
8
food offered
8
aba
6
assessing activity-based
4
anorexia mice
4
mice rodents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!