Carrier mobility is one of the crucial parameters determining the electronic device performance. We apply the light-induced transient grating technique to measure independently the carrier diffusion coefficient and lifetime, and to reveal the impact of additives on carrier transport properties in wet-cast CHNHPbI (MAPbI) perovskite films. We use the high excitation regime, where diffusion length of carriers is controlled purely by carrier diffusion and not by the lifetime. We demonstrate a four-fold increase in diffusion coefficient due to the reduction of localization center density by additives; however, the density dependence analysis shows the dominance of localization-limited diffusion regime. The presented approach allows us to estimate the limits of technological improvement-carrier diffusion coefficient in wet-cast layers can be expected to be enhanced by up to one order of magnitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.8b01155 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!