The success of strain engineering has made a step further for the enhancement of material properties and the introduction of new physics, especially with the discovery of the critical roles of strain in the heterogeneous interface between two dissimilar materials (for example, FeSe/SrTiO). On the other hand, the strain manipulation has been limited to chemical epitaxy and nanocomposites that, to a large extent, limit the possible material systems that can be explored. By defect engineering, we obtained, for the first time, dense three-dimensional strongly correlated VO epitaxial nanoforest arrays that can be used as a novel "substrate" for dynamic strain engineering, due to its metal-insulator transition. The highly dense nanoforest is promising for the possible realization of bulk strain similar to the effect of nanocomposites. By growing single-crystalline halide perovskite CsPbBr, a mechanically soft and emerging semiconducting material, onto the VO, a heterogeneous interface is created that can entail a ~1% strain transfer upon the metal-insulator transition of VO. This strain is large enough to trigger a structural phase transition featured by PbX octahedral tilting along with a modification of the photoluminescence energy landscape in halide perovskite. Our findings suggest a promising strategy of dynamic strain engineering in a heterogeneous interface carrying soft and strain-sensitive semiconductors that can happen at a larger volumetric value surpassing the conventional critical thickness limit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969812PMC
http://dx.doi.org/10.1126/sciadv.aar3679DOI Listing

Publication Analysis

Top Keywords

strain engineering
16
heterogeneous interface
12
strain
9
engineering heterogeneous
8
dynamic strain
8
metal-insulator transition
8
halide perovskite
8
engineering
5
defect-engineered epitaxial
4
epitaxial strain
4

Similar Publications

Isolation and identification of the causal agent of gummy stem blight disease in Cucumis sativus caused by a bacterial pathogen in China.

Sci Rep

January 2025

College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.

Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.

View Article and Find Full Text PDF

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Ciliary muscle traction during accommodation is able to induce optic nerve head deformation.

Eye (Lond)

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.

Objectives: To use finite element (FE) modeling and in vivo optical coherence tomography (OCT) imaging to explore the effect of ciliary muscle traction on optic nerve head (ONH) deformation during accommodation.

Methods: We developed a FE model to mimic the ciliary muscle traction during accommodation, and varied the stiffness of the sclera, choroid, Bruch's membrane (BM), prelaminar neural tissue and lamina cribrosa (LC) to assess their effects on accommodation-induced ONH strains. To validate the FE model, OCT images of the right eyes' ONHs from 20 subjects (25 ± 1.

View Article and Find Full Text PDF

Research on the high precision hydraulic column stress monitoring method.

Sci Rep

January 2025

Shandong Yankuang Intelligent Manufacturing Co., Jining, 272000, China.

The hydraulic column is a core component in the coal mine support system, however, the real-time monitoring of the hydraulic column during the service process of the hydraulic support faces challenges. To address these issues, a high-precision stress mapping method of hydraulic column is proposed. The hydraulic column loss function was constructed to guide the data-driven model training, and the cylinder stress mechanism model was established by using the elastic-plastic theory of thick-walled cylinder.

View Article and Find Full Text PDF

Hierarchically aligned heterogeneous core-sheath hydrogels.

Nat Commun

January 2025

Institute of Innovative Materials, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China.

Natural materials with highly oriented heterogeneous structures are often lightweight but strong, stiff but tough and durable. Such an integration of diverse incompatible mechanical properties is highly desired for man-made materials, especially weak hydrogels which are lack of high-precision structural design. Herein, we demonstrate the fabrication of hierarchically aligned heterogeneous hydrogels consisting of a compactly crosslinked sheath and an aligned porous core with alignments of nanofibrils at multi-scales by a sequential self-assembly assisted salting out method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!