Environmental Processing of Lipids Driven by Aqueous Photochemistry of α-Keto Acids.

ACS Cent Sci

Department of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States.

Published: May 2018

Sunlight can initiate photochemical reactions of organic molecules though direct photolysis, photosensitization, and indirect processes, often leading to complex radical chemistry that can increase molecular complexity in the environment. α-Keto acids act as photoinitiators for organic species that are not themselves photoactive. Here, we demonstrate this capability through the reaction of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, with a series of fatty acids and fatty alcohols. We show for five different cases that a cross-product between the photoinitiated α-keto acid and non-photoactive species is formed during photolysis in aqueous solution. Fatty acids and alcohols are relatively unreactive species, which suggests that α-keto acids are able to act as radical initiators for many atmospherically relevant molecules found in the sea surface microlayer and on atmospheric aerosol particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5968514PMC
http://dx.doi.org/10.1021/acscentsci.8b00124DOI Listing

Publication Analysis

Top Keywords

α-keto acids
16
fatty acids
8
acids
6
α-keto
5
environmental processing
4
processing lipids
4
lipids driven
4
driven aqueous
4
aqueous photochemistry
4
photochemistry α-keto
4

Similar Publications

Isostructured lanthanide-Brønsted acidic ionic liquid coordination polymers, {[Ln(CHNO)(HO)]Cl} (LnIMDC(HO), Ln = Eu, Gd, or Tb, CHNO = [IMDC]) and {[EuTb(CHNO)(HO)]Cl} (EuTbIMDC(HO))), have been synthesized using 1,3-bis(carboxymethyl) imidazolium chloride ([HIMDC]Cl) as linkers. LnIMDC(HO) (Ln = Eu or Tb) and EuTbIMDC(HO) exhibit good temperature sensing performance over a wide temperature range with maximum sensitivities of 2.73%·K (392 K) and 2.

View Article and Find Full Text PDF

Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.

View Article and Find Full Text PDF

The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders.

View Article and Find Full Text PDF

Characterization and design of dipeptide media formulation for scalable therapeutic production.

Appl Microbiol Biotechnol

January 2025

School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-GuGyeonggi-Do 16419, Suwon-Si, South Korea.

Process intensification and simplification in biopharmaceutical manufacturing have driven the exploration of advanced feeding strategies to improve culture performance and process consistency. Conventional media design strategies, however, are often constrained by the stability and solubility challenges of amino acids, particularly in large-scale applications. As a result, dipeptides have emerged as promising alternatives.

View Article and Find Full Text PDF

Aims/hypothesis: Existing evidence on the relationship between intake of monounsaturated fatty acids (MUFAs) and type 2 diabetes is conflicting. Few studies have examined whether MUFAs from plant or animal sources (MUFA-Ps and MUFA-As, respectively) exhibit differential associations with type 2 diabetes. We examined associations of intakes of total MUFAs, MUFA-Ps and MUFA-As with type 2 diabetes risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!