Trametinib prevents mesothelial-mesenchymal transition and ameliorates abdominal adhesion formation.

J Surg Res

The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.

Published: July 2018

Background: Intra-abdominal adhesions are a major cause of morbidity after abdominal or gynecologic surgery. However, knowledge about the pathogenic mechanism(s) is limited, and there are no effective treatments. Here, we investigated a mouse model of bowel adhesion formation and the effect(s) of an Federal Drug Administration-approved drug (trametinib) in preventing adhesion formation.

Materials And Methods: C57BL/6 mice were used to develop a consistent model of intra-abdominal adhesion formation by gentle cecal abrasion with mortality rates of <10%. Adhesion formation was analyzed histologically and immunochemically to characterize the expression of pro-fibrotic marker proteins seen in pathologic scaring and included alpha smooth muscle actin (αSMA) and fibronectin EDA (FN) which arises from alternative splicing of the fibronectin messenger RNA resulting in different protein isoforms. Trichrome staining assessed collagen deposition. Quantitative polymerase chain reaction analysis of RNA isolated from adhesions by laser capture microscopy was carried out to assess pro-fibrotic gene expression. To block adhesion formation, trametinib was administered via a subcutaneous osmotic pump.

Results: Adhesions were seen as early as post-operative day 1 with extensive adhesions being formed and vascularized by day 5. The expression of the FN isoform occurred first with subsequent expression of αSMA and collagen. The drug trametinib was chosen for in vivo studies because it effectively blocked the mesothelial to mesenchymal transition of rat mesothelium. Trametinib, at the highest dose used (3 mg/kg/d), prevented adhesion formation while at lower doses, adhesions were usually limited, as evidenced by the presence of FN isoform but not αSMA.

Conclusions: Cecal abrasion in mice is a reliable model to study abdominal adhesions, which can be ameliorated using the MEK1/2 inhibitor trametinib. While blocking adhesion formation at the cell and molecular levels, trametinib, at the therapeutic doses utilized, did not impair the wound healing at the laparotomy site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2018.02.012DOI Listing

Publication Analysis

Top Keywords

adhesion formation
12
trametinib prevents
4
prevents mesothelial-mesenchymal
4
mesothelial-mesenchymal transition
4
transition ameliorates
4
ameliorates abdominal
4
adhesion
4
abdominal adhesion
4
formation background
4
background intra-abdominal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!