Background: Stroke occurs in 3% to 8% and silent cerebral infarction in >60% of patients undergoing thoracic endovascular aortic repair (TEVAR). We investigated the utility of a filter cerebral embolic protection device (CEPD) to reduce diffusion-weighted magnetic resonance imaging (DW-MRI) detected cerebral injury and gaseous and solid embolization during TEVAR.
Methods: Patients anatomically suitable underwent TEVAR with CEPD, together with intraoperative transcranial Doppler to detect gaseous and solid high-intensity transient signals (HITSs), pre- and postoperative DW-MRI, and clinical neurologic assessment ≤6 months after the procedure.
Results: Ten patients (mean age, 68 years) underwent TEVAR with a CEPD. No strokes or device-related complications developed. The CEPD added a median of 7 minutes (interquartile range [IQR], 5-16 minutes) to the procedure, increased the fluoroscopy time by 3.3 minutes (IQR, 2.4-3.9 minutes), and increased the total procedural radiation by 2.2%. The dose area product for CEPD was 1824 mGy·cm (IQR, 1235-3392 mGy·cm). The average contrast volume used increased by 23 mL (IQR, 24-35 mL). New DW-MRI lesions, mostly in the hindbrain, were identified in seven of nine patients (78%). The median number was 1 (IQR, 1-3), with a median surface area of 6 mm (IQR, 3-16 mm). A total of 2835 HITSs were detected in seven patients: 91% gaseous and 9% solid. The maximum number of HITSs were detected during CEPD manipulation: 142 (IQR, 59-146; 95% gaseous and 5% solid). The maximum number of HITSs during TEVAR occurred during stent deployment: 82 (IQR, 73-142; 81% gas and 11% solid). Solid HITSs were associated with an increase in surface area of new DW-MRI lesions (r = 0.928; P = .01). Increased gaseous HITSs were associated with new DW-MRI lesions (r = 0.912; P = .01), which were smaller (<3 mm; r = 0.88; P = .02). Embolic debris was captured in 95% of the filters. The median particle count was 937 (IQR, 146-1687), and the median surface area was 2.66 mm (IQR, 0.08-9.18 mm).
Conclusions: The use of a CEPD with TEVAR appeared to be safe and feasible in this first pilot study and could serve as a useful adjunct to reduce cerebral injury. The significance of gaseous embolization and its role in cerebral injury in TEVAR warrants further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvs.2017.11.098 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!