In the present study, we evaluated the pre-monsoon urban atmosphere (UA) aerosol characteristics remotely sensed by Aerosol Robotic Network (AERONET) over the Bengal Gangetic plain (BGP) at Kolkata (KOL) and their implication in potential source types and spatiotemporal features. About 70% of the AERONET-sensed aerosol optical depth at 0.50 μ m, AOD (Angstrom exponent, α at 0.44-0.87 μ m) during the pre-monsoon period (February to June) was greater than 0.50 (≤ 1); the pre-monsoon mean of AOD (α) was 0.73 (0.83) which was found being slightly higher (lower) than nearby AERONET stations (Dhaka/Bhola) located over the eastern Ganges basin. The volume geometric mean radius for the fine mode (FM) (coarse mode, CM) UA aerosol from AERONET retrievals was estimated to be 0.14-0.17 (2.24-2.75) μ m. The spectral distribution of the monthly mean of UA aerosol single-scattering albedo (SSA) exhibited an increasing trend with an increase in wavelength throughout all wavelengths during April, unlike the rest of the pre-monsoon months. Investigation of aerosol types indicated the pre-dominance of dust during April and a mixture of urban/open burning with mixed desert dust during the rest of the pre-monsoon months. Potential aerosol source fields were identified over the Indo-Gangetic Plain (IGP), east coast, northwestern India, and oceanic regions; these were estimated at elevated layers of atmosphere during April and May but that at surface layers during February and June. Comparison of aerosol characteristics over the BGP (at Kolkata, KOL) with that at six other coincident AERONET sites over India revealed mean AOD at KOL being 11 to 91% higher than the rest of the AERONET stations, with the relative increase at KOL being the highest during March; this was attributed to persistent high values of both FM and CM AOD unlike the rest of the stations. The monthly mean of SSA was the lowest at KOL among AERONET stations, during February and March. Comparison of the AOD from the AERONET aerosol retrievals over the BGP UA with the coincident Moderate Resolution Imaging Spectroradiometer (MODIS) latest retrievals (C005 and C006) indicated a moderate correlation between the two retrievals; discrepancy in MODIS-retrieved relative distribution of FM and CM AOD was inferred compared to AERONET in the UA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-2290-xDOI Listing

Publication Analysis

Top Keywords

aeronet stations
12
aerosol
10
aeronet
9
pre-monsoon urban
8
urban atmosphere
8
atmosphere aerosol
8
potential source
8
remotely sensed
8
aeronet bengal
8
bengal gangetic
8

Similar Publications

In the present work, it is the first time an interpretable machine learning model has been developed for the estimation of Particulate Matter 10 µm (PM) concentrations over India using Aerosol Optical Depth (AOD) from two different satellites, i.e. INSAT-3D and Moderate Resolution Imaging Spectroradiometer (MODIS) for the period of 7 years (2014 to 2020).

View Article and Find Full Text PDF

This study aims to analyze the trends, causes, and future prospects of aerosols in the Arctic region using ground-based observations, satellite data, and reanalysis model data. An analysis of aerosol remote sensing data from AERONET stations in the Arctic from 2000 to 2023 showed a long-term decrease in aerosol optical depth (AOD), aligning with emission regulations in Europe and North America and changes in atmospheric circulation patterns. However, the maximum AOD values observed at AERONET stations in Canada and Russia during the period of 2018-2023 were up to five times higher than the long-term average.

View Article and Find Full Text PDF

An extinction of incoming solar radiation is taking place by absorption and scattering by dust, water droplets, and gaseous molecules. Such phenomena are responsible for altering meteorological variables. In the present study, temporal analysis of the aerosol optical thickness (AOT) and black carbon (BC) surface mass concentration was undertaken using an ozone monitoring instrument (OMI) and modern-era retrospective analysis for research and applications, version 2 (MERRA-2) satellite from the year 2018 to 2022.

View Article and Find Full Text PDF

Accurately identifying the authentic local aerosol types is one of the fundamental tasks in studying aerosol radiative effects and model assessment. In this paper, improvements were made to the traditional Gaussian Mixture Model, leading to the following results: 1) This study introduces several improvements to the traditional Gaussian Mixture Model (GMM), referred to as M-GMMs. These improvements include the incorporation of multivariate kurtosis coefficients, Mahalanobis distance instead of Euclidean distance, and weights of variables.

View Article and Find Full Text PDF

Aerosol optical depth (AOD) serves as a crucial indicator for assessing regional air quality. To address regional and urban pollution issues, there is a requirement for high-resolution AOD products, as the existing data is of very coarse resolution. To address this issue, we retrieved high-resolution AOD over Kanpur (26.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!