Metabolites characterization of a novel DPP-4 inhibitor, imigliptin in humans and rats using ultra-high performance liquid chromatography coupled with synapt high-resolution mass spectrometry.

J Pharm Biomed Anal

Clinical Pharmacology Research Center Phase I Unit, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100032, China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Beijing 100032, China. Electronic address:

Published: August 2018

Imigliptin has been reported as a novel dipeptidyl-peptidase-IV (DPP-4) inhibitor to treat type 2 Diabetes Mellitus (T2DM), and is currently being tested in clinical trials. In the first human clinical study, imigliptin was well tolerated and proved to be a potent DPP-4 inhibitor. Considering its potential therapeutic benefits and promising future, it is of great importance to study the metabolite profiles in the early stage of drug development. In the present study, a robust and reliable analytical method based on the ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS) method combined with MassLynx software was established to investigate the characterization of metabolites of imigliptin in human and rat plasma, urine and feces after oral administration. As a result, a total of 9 metabolites were identified in humans, including 6, 9 and 8 metabolites in human plasma, urine, and feces, respectively. A total of 11 metabolites were identified in rats, including 7, 10 and 8 metabolites in rat plasma, urine, and feces, respectively. In addition, 6 of the metabolites detected in humans and rats were phase I metabolites, including demethylation, carboxylation, hydroxylation and dehydrogenation metabolites, and 5 of the metabolites were phase II metabolites, including acetylation and glucuronidation. There was no human metabolite detected compared to those in rats. The major metabolites detected in human plasma (M1 and M2) were products resulting from acetylation, and hydroxylation followed by dehydrogenation. M1 was the major metabolite in rat plasma. M2 and the parent drug were the major drug-related substances in human urine. The parent drug was the major drug-related substances in rat urine. M2, M5 (hydroxylation product) and M6 (2 × hydroxylation and acetylation product) were the predominant metabolites in human feces. M2 and M5 were the major metabolites in rat feces. In addition, renal clearance was the major route of excretion for imigliptin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2018.05.029DOI Listing

Publication Analysis

Top Keywords

metabolites
14
dpp-4 inhibitor
12
rat plasma
12
plasma urine
12
urine feces
12
humans rats
8
ultra-high performance
8
performance liquid
8
mass spectrometry
8
total metabolites
8

Similar Publications

Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.

View Article and Find Full Text PDF

Research has shown various hydrolyzed proteins possessed beneficial physiological functions; however, the mechanism of how hydrolysates influence metabolism is unclear. Therefore, the current study aimed to examine the effects of different sources of protein hydrolysates, being the main dietary protein source in extruded diets, on metabolism in healthy adult dogs. Three complete and balanced extruded canine diets were formulated: control chicken meal diet (CONd), chicken liver and heart hydrolysate diet (CLHd), mechanically separated chicken hydrolysate diet (CHd).

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!