A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estradiol dimer inhibits tubulin polymerization and microtubule dynamics. | LitMetric

Microtubule dynamics is one of the major targets for new chemotherapeutic agents. This communication presents the synthesis and biological profiling of steroidal dimers based on estradiol, testosterone and pregnenolone bridged by 2,6-bis(azidomethyl)pyridine between D rings. The biological profiling revealed unique properties of the estradiol dimer including cytotoxic activities on a panel of 11 human cell lines, ability to arrest in the G2/M phase of the cell cycle accompanied with the attenuation of DNA/RNA synthesis. Thorough investigation precluded a genomic mechanism of action and revealed that the estradiol dimer acts at the cytoskeletal level by inhibiting tubulin polymerization. Further studies showed that estradiol dimer, but none of the other structurally related dimeric steroids, inhibited assembly of purified tubulin (IC, 3.6 μM). The estradiol dimer was more potent than 2-methoxyestradiol, an endogenous metabolite of 17β-estradiol and well-studied microtubule polymerization inhibitor with antitumor effects that was evaluated in clinical trials. Further, it was equipotent to nocodazole (IC, 1.5 μM), an antimitotic small molecule of natural origin. Both estradiol dimer and nocodazole completely and reversibly depolymerized microtubules in interphase U2OS cells at 2.5 μM concentration. At lower concentrations (50 nM), estradiol dimer decreased the microtubule dynamics and growth life-time and produced comparable effect to nocodazole on the microtubule dynamicity. In silico modeling predicted that estradiol dimer binds to the colchicine-binding site in the tubulin dimer. Finally, dimerization of the steroids abolished their ability to induce transactivation by estrogen receptor α and androgen receptors. Although other steroids were reported to interact with microtubules, the estradiol dimer represents a new structural type of steroid inhibitor of tubulin polymerization and microtubule dynamics, bearing antimitotic and cytotoxic activity in cancer cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2018.05.008DOI Listing

Publication Analysis

Top Keywords

estradiol dimer
36
microtubule dynamics
16
tubulin polymerization
12
estradiol
10
dimer
9
polymerization microtubule
8
biological profiling
8
cell lines
8
microtubule
6
tubulin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!