Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves production of acute-phase proteins, including serum amyloid A (SAA). Interleukin-1β (IL-1β), a master regulator of neuroinflammation produced by activated inflammatory cells of the myeloid lineage, in particular microglia, plays a key role in the pathogenesis of acute and chronic diseases of the peripheral nervous system and CNS. IL-1β release is promoted by ATP acting at the purinergic P2X receptor (P2XR) in cells primed with toll-like receptor (TLR) ligands.
Methods: Purified (> 99%) microglia cultured from neonatal rat cortex and cerebellum were first primed with the putative TLR4/TLR2 agonist SAA (recombinant human Apo-SAA) or the established TLR4 agonist lipopolysaccharide (LPS) followed by addition of ATP. Expression of genes for the NLRP3 inflammasome, IL-1β, tumor necrosis factor-α (TNF-α), and SAA1 was measured by quantitative real-time polymerase chain reaction (q-PCR). Intracellular and extracellular amounts of IL-1β were determined by ELISA.
Results: Apo-SAA stimulated, in a time-dependent manner, the expression of NLRP3, IL-1β, and TNF-α in cortical microglia, and produced a concentration-dependent increase in the intracellular content of IL-1β in these cells. A 2-h 'priming' of the microglia with Apo-SAA followed by addition of ATP for 1 h, resulting in a robust release of IL-1β into the culture medium, with a concomitant reduction in its intracellular content. The selective P2XR antagonist A740003 blocked ATP-dependent release of IL-1β. Microglia prepared from rat cerebellum displayed similar behaviors. As with LPS, Apo-SAA upregulated SAA1 and TLR2 mRNA, and downregulated that of TLR4. LPS was less efficacious than Apo-SAA, perhaps reflecting an action of the latter at TLR4 and TLR2. The TLR4 antagonist CLI-095 fully blocked the action of LPS, but only partially that of Apo-SAA. Although the TLR2 antagonist CU-CPT22 was inactive against Apo-SAA, it also failed to block the TLR2 agonist PamCSK.
Conclusions: Microglia are central to the inflammatory process and a major source of IL-1β when activated. P2XR-triggered IL-1β maturation and export is thus likely to represent an important contributor to this cytokine pool. Given that SAA is detected in Alzheimer disease and multiple sclerosis brain, together with IL-1β-immunopositive microglia, these findings propose a link between P2XR, SAA, and IL-1β in CNS pathophysiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5970445 | PMC |
http://dx.doi.org/10.1186/s12974-018-1205-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!