Corals are the main reef builders through the formation of calcium carbonate skeletons. In recent decades, coral calcification has however been impacted by many global (climate change) and local stressors (such as destructive fishing practices and changes in water quality). In this particular context, it is crucial to identify and characterize the various factors that promote coral calcification. We thus performed the first investigation of the effect of nickel and urea enrichment on the calcification rates of three coral species. These two factors may indeed interact with calcification through the activity of urease, which catalyzes the hydrolysis of urea to produce inorganic carbon and ammonia that are involved in the calcification process. Experiments were performed with the asymbiotic coral Dendrophyllia arbuscula and, to further assess if urea and/or nickel has an indirect link with calcification through photosynthesis, results were compared with those obtained with two symbiotic corals, Acropora muricata and Pocillopora damicornis, for which we also measured photosynthetic rates. Ambient and enriched nickel (0.12 and 3.50 μg L) combined with ambient and enriched urea concentrations (0.26 and 5.52 μmol L) were tested during 4 weeks in aquaria. We demonstrate in the study that a nickel enrichment alone or combined with a urea enrichment strongly stimulated urea uptake rates of the three tested species. In addition, this enhancement of urea uptake and hydrolysis significantly increased the long-term calcification rates (i.e. growth) of the three coral species investigated, inducing a 1.49-fold to 1.64-fold increase, respectively for D. arbuscula and P. damicornis. Since calcification was greatly enhanced by nickel in the asymbiotic coral species - i.e. in absence of photosynthesis - we concluded that the effect of increased urease activity on calcification was mainly direct. According to our results, it can be assumed that corals in some fringing reefs, benefiting from seawater enriched in nickel may have advantages and might be able to use urea more effectively as a carbon and nitrogen source. It can also be suggested that urea, for which hotspots are regularly measured in reef waters may alleviate the negative consequences of thermal stress on corals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2018.05.013 | DOI Listing |
Proc Biol Sci
January 2025
Department of Biology, California State University Northridge, Northridge, CA, USA.
Coral reefs experience numerous environmental gradients affecting organismal physiology and species biodiversity, which ultimately impact community metabolism. This study shows that submarine groundwater discharge (SGD), a common natural environmental gradient in coastal ecosystems associated with decreasing temperatures, salinity and pH with increasing nutrients, has both direct and indirect effects on coral reef community metabolism by altering individual growth rates and community composition. Our data revealed that SGD exposure hindered the growth of two algae, and by 67 and 200%, respectively, and one coral, by 20%.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.
The pollution of marine environments with plastics, particularly microplastic (MP, i.e., plastic particles <5 mm), is a major threat to marine biota, including corals.
View Article and Find Full Text PDFBMC Res Notes
December 2024
Research Unit on the Biology of Precious Corals CSM-CHANEL, 8 Quai Antoine 1er, Monaco, Principality of Monaco.
Objectives: Corallium rubrum, the precious red coral, is an octocoral endemic to the western Mediterranean Sea. Like most octocorals, it produces tiny, calcified structures called sclerites. Uniquely, it also produces a completely calcified axial skeleton that is a bright red color.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan.
Nitrogen's impact on corals has been widely studied, but the role of phosphate is often overlooked due to its low concentrations in seawater. Previous studies have suggested that phosphate can penetrate intercellular spaces to reach the extracellular calcifying medium (ECM), where it adsorbs onto skeletal surfaces and disrupts calcium carbonate crystallization, thereby inhibiting skeletal growth. Based on this mechanism, we hypothesized that skeletal growth inhibition depends not only on phosphate concentration but also on total phosphate load (flow volume × concentration).
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan.
This study aims to elucidate a novel mechanism for elevating the pH within the calicoblastic extracellular calcifying medium (pH) of corals and demonstrate the potential contribution of calcifying organisms to CO sequestration. Departing from traditional models that attribute the increase in pH primarily to H expulsion via Ca-ATPase, we emphasize the significant role of polyamines. These ubiquitous biogenic amines conveyed by calicoblastic cells through polyamine transporters demonstrate a remarkable affinity for CO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!