It is widely believed that the activities of bone cells at the tissue scale not only govern the size of the vascular pore spaces (and hence, the amount of bone tissue available for actually carrying the loads), but also the characteristics of the extracellular bone matrix itself. In this context, increased mechanical stimulation (in mediolateral regions of human femora, as compared to anteroposterior regions) may lead to increased bone turnover, lower bone matrix mineralization, and therefore lower tissue modulus. On the other hand, resorption-only processes (in endosteal versus periosteal regions) may have the opposite effect. A modal analysis of nanoindentation data obtained on femurs from the Melbourne Femur Research Collection (MFRC) indeed confirms that bone is stiffer in endosteal regions compared to periosteal regions (E̅ = 29.34 ± 0.75 GPa >E̅ = 24.67 ± 1.63 GPa), most likely due to the aging-related increase in resorption modeling on endosteal surfaces resulting in trabecularization of cortical bone. The results also show that bone is stiffer along the anteroposterior direction compared the mediolateral direction (E̅ = 28.89 ± 1.08 GPa >E̅ = 26.03 ± 2.31 GPa), the former being aligned with the neutral bending axis of the femur and, thus, undergoing more resorption modeling and consequently being more mineralized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2018.05.014DOI Listing

Publication Analysis

Top Keywords

bone
9
modal analysis
8
analysis nanoindentation
8
nanoindentation data
8
bone turnover
8
bone matrix
8
periosteal regions
8
bone stiffer
8
resorption modeling
8
regions
5

Similar Publications

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

Corynebacteria, non-spore-forming, gram-positive, aerobic or facultative anaerobic, pleomorphic bacilli, are part of the normal skin, oropharyngeal, and intestinal flora in humans. However, this microorganism can rarely be associated with invasive infections such as bone and joint infections, bacteremia, endocarditis, meningitis, liver and spleen abscesses. We present a case of bacteremic arthritis of a native knee joint caused by non-toxigenic Corynebacterium diphtheriae in a patient with alcoholic liver cirrhosis.

View Article and Find Full Text PDF

Importance: Fragility fractures result in significant morbidity.

Objective: To review evidence on osteoporosis screening to inform the US Preventive Services Task Force.

Data Sources: PubMed, Embase, Cochrane Library, and trial registries through January 9, 2024; references, experts, and literature surveillance through July 31, 2024.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!