[12]aneN-based lipid with naphthalimide moiety for enhanced gene transfection efficiency.

Bioorg Chem

Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China. Electronic address:

Published: September 2018

Three cationic lipids derived from [12]aneN modified with naphthalimide (1a), oleic acid (1b) and octadecylamine (1c) were designed and synthesized. In vitro transfection showed that all these liposomes can deliver plasmid DNA into the tested cell lines. Among these liposomes, 1a gave the best transfection efficiency (TE) in A549 cells, which was higher than that of lipofectamine 2000. More importantly, the TE of 1a was dramatically increased in the presence of 10% serum. These results suggested that 1a might be a promising non-viral gene vector, and also give further insight for developing novel high performance gene delivery agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2018.04.018DOI Listing

Publication Analysis

Top Keywords

transfection efficiency
8
[12]anen-based lipid
4
lipid naphthalimide
4
naphthalimide moiety
4
moiety enhanced
4
enhanced gene
4
gene transfection
4
efficiency three
4
three cationic
4
cationic lipids
4

Similar Publications

Lipid nanoparticles (LNP) are the most clinically advanced non-viral gene delivery system. While progress has been made for enhancing delivery, cell specific targeting remains a challenge. Targeting moieties such as antibodies can be chemically-conjugated to LNPs however, this approach is complex and has challenges for scaling up.

View Article and Find Full Text PDF

Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells-such as insertional mutagenesis and secondary tumour formation-remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield.

View Article and Find Full Text PDF

Messenger RNA (mRNA) therapeutics have garnered considerable attention due to their remarkable efficacy in the treatment of various diseases. The COVID-19 mRNA vaccine and RSV mRNA vaccine have been approved on the market. Due to the inherent nuclease-instability and negative charge of mRNA, delivery systems are developed to protect the mRNA from degradation and facilitate its crossing cell membrane to express functional proteins or peptides in the cytoplasm.

View Article and Find Full Text PDF

Construction and verification of an infectious cDNA clone of encephalomyocarditis virus from pigs.

J Virol Methods

January 2025

Huzhou Key Laboratory of Innovation and Application of Agricultural Germplasm Resources, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China. Electronic address:

In this study, a novel Encephalomyocarditis virus (EMCV) reverse genetic operating system was developed utilizing CMV promoters, enabling EMCV genome expression under the transcriptional control of the CMV immediate early promoter and BGH polyA transcriptional-termination signal. The full-length cDNA of EMCV BJC3 was ligated to the pRK5 vector, incorporating the CMV eukaryotic promoter sequence, resulting in the construction of recombinant plasmid EMCV (pEMCV). Subsequently, the recombinant plasmid was transfected into BHK-21 cells to generate the rescue virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!