Background & Aims: Liver fibrosis is characterized by the accumulation of extracellular matrix produced by hepatic myofibroblasts (hMF), the activation of which is critical to the fibrogenic process. Extracellular ATP, released by dying or stressed cells, and its purinergic receptors, constitute a powerful signaling network after injury. Although the purinergic receptor P2X4 (P2RX4) is highly expressed in the liver, its functions in hMF had never been investigated during liver fibrogenesis.

Methods: In vivo, bile duct ligation was performed and methionine- and choline-deficient diet administered in wild-type and P2x4 knock-out (P2x4-KO) mice. In vitro, hMF were isolated from mouse (wild-type and P2x4-KO) and human liver. P2X4 pharmacological inhibition (in vitro and in vivo) and P2X4 siRNAs (in vitro) were used. Histological, biochemical and cell culture analysis allowed us to study P2X4 expression and its involvement in the regulation of fibrogenic and fibrolytic factors, as well as of hMF activation markers and properties.

Results: P2X4 genetic invalidation or pharmacological inhibition protected mice from liver fibrosis and hMF accumulation after bile duct ligation or methionine- and choline-deficient diet. Human and mouse hMFs expressed P2X4, mainly in lysosomes. Invalidation of P2X4 in human and mouse hMFs blunted their activation marker expression and their fibrogenic properties. Finally, we showed that P2X4 regulates calcium entry and lysosomal exocytosis in hMF, impacting on ATP release, profibrogenic secretory profile, and transcription factor activation.

Conclusion: P2X4 expression and activation is critical for hMF to sustain their activated and fibrogenic phenotype. Therefore, the inactivation of P2X4 may be of therapeutic interest during liver fibrotic diseases.

Lay Summary: During chronic injury, the liver often repairs with fibrotic tissue, which impairs liver function, and for which there is currently no treatment. We found that a previously unexplored pathway involving the purinergic receptor P2X4, can modulate fibrotic liver repair. Therefore, this receptor could be of interest in the development of novel therapies for fibrotic liver diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2018.05.020DOI Listing

Publication Analysis

Top Keywords

p2x4
13
purinergic receptor
12
liver
11
liver fibrosis
8
hmf activation
8
activation critical
8
receptor p2x4
8
bile duct
8
duct ligation
8
methionine- choline-deficient
8

Similar Publications

Cholesterol metabolites modulate ionotropic P2X4 and P2X7 receptor current in microglia cells.

Neuropharmacology

January 2025

Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy. Electronic address:

The central nervous system is a well-known steroidogenic tissue producing, among others, cholesterol metabolites such as neuroactive steroids, oxysterols and steroid hormones. It is well known that these endogenous molecules affect several receptor classes, including ionotropic GABAergic and NMDA glutamatergic receptors in neurons. It has been shown that also ionotropic purinergic (P2X) receptors are cholesterol metabolites' targets.

View Article and Find Full Text PDF

Piperazine-based P2X4 receptor antagonists.

Arch Pharm (Weinheim)

January 2025

European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.

The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.

View Article and Find Full Text PDF

Non-ionotropic NMDAR signalling activates Panx1 to induce P2X4R-dependent long-term depression in the hippocampus.

J Physiol

December 2024

Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

In recent years, evidence supporting non-ionotropic signalling by the NMDA receptor (niNMDAR) has emerged, including roles in long-term depression (LTD). Here, we investigated whether niNMDAR-pannexin-1 (Panx1) contributes to LTD at the CA3-CA1 hippocampal synapse. Using whole-cell, patch clamp electrophysiology in rat hippocampal slices, we show that a low-frequency stimulation (3 Hz) of the Schaffer collaterals produces LTD that is blocked by continuous but not transient application of the NMDAR competitive antagonist, MK-801.

View Article and Find Full Text PDF

The chronic activation of immune cells can participate in the development of pathological conditions such as neurodegenerative diseases including Alzheimer's disease (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, compelling evidence indicates that purinergic signaling plays a key role in neuro-immune cell functions. The extracellular release of adenosine 5'-triphosphate (ATP), and its breakdown products (ADP and adenosine) provide the versatile basis for complex purinergic signaling through the activation of several families of receptors.

View Article and Find Full Text PDF

Onset, progression and cardiovascular outcome of chronic kidney disease (CKD) are influenced by the concomitant sterile inflammation. The pro-inflammatory cytokine family interleukin (IL)-1 is crucial in CKD with the key alarmin IL-1α playing an additional role as an adhesion molecule that facilitates immune cell tissue infiltration and consequently inflammation. Here, we investigate calcium ion and reactive oxygen species (ROS)-dependent regulation of different aspects of IL-1α-mediated inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!