AI Article Synopsis

  • Macrophages play a significant role in cholestatic liver disease, particularly in conditions like primary sclerosing cholangitis (PSC), as their presence correlates with liver injury and fibrosis.
  • In experimental models, researchers found an increase in pro-inflammatory (M1) and alternatively-activated (M2) macrophages around bile ducts in PSC-affected livers, indicating their active involvement in disease progression.
  • Targeting the recruitment of macrophages through genetic deletion or pharmacological agents showed promise in reducing liver injury and fibrosis, suggesting that modulating macrophage activity could be a potential therapeutic strategy for PSC and similar liver diseases.

Article Abstract

Background & Aims: Macrophages contribute to liver disease, but their role in cholestatic liver injury, including primary sclerosing cholangitis (PSC), is unclear. We tested the hypothesis that macrophages contribute to the pathogenesis of, and are therapeutic targets for, PSC.

Methods: Immune cell profile, hepatic macrophage number, localization and polarization, fibrosis, and serum markers of liver injury and cholestasis were measured in an acute (intrabiliary injection of the inhibitor of apoptosis antagonist BV6) and chronic (Mdr2 mice) mouse model of sclerosing cholangitis (SC). Selected observations were confirmed in liver specimens from patients with PSC. Because of the known role of the CCR2/CCL2 axis in monocyte/macrophage chemotaxis, therapeutic effects of the CCR2/5 antagonist cenicriviroc (CVC), or genetic deletion of CCR2 (Ccr2 mice) were determined in BV6-injected mice.

Results: We found increased peribiliary pro-inflammatory (M1-like) and alternatively-activated (M2-like) monocyte-derived macrophages in PSC compared to normal livers. In both SC models, genetic profiling of liver immune cells identified a predominance of monocytes/macrophages; immunohistochemistry confirmed peribiliary monocyte-derived macrophage recruitment (M1>M2-polarized), which paralleled injury onset and was reversed upon resolution in acute SC mice. PSC, senescent and BV6-treated human cholangiocytes released monocyte chemoattractants (CCL2, IL-8) and macrophage-activating factors in vitro. Pharmacological inhibition of monocyte recruitment by CVC treatment or CCR2 genetic deletion attenuated macrophage accumulation, liver injury and fibrosis in acute SC.

Conclusions: Peribiliary recruited macrophages are a feature of both PSC and acute and chronic murine SC models. Pharmacologic and genetic inhibition of peribiliary macrophage recruitment decreases liver injury and fibrosis in mouse SC. These observations suggest monocyte-derived macrophages contribute to the development of SC in mice and in PSC pathogenesis, and support their potential as a therapeutic target.

Lay Summary: Primary sclerosing cholangitis (PSC) is an inflammatory liver disease which often progresses to liver failure. The cause of the disease is unclear and therapeutic options are limited. Therefore, we explored the role of white blood cells termed macrophages in PSC given their frequent contribution to other human inflammatory diseases. Our results implicate macrophages in PSC and PSC-like diseases in mice. More importantly, we found that pharmacologic inhibition of macrophage recruitment to the liver reduces PSC-like liver injury in the mouse. These exciting observations highlight potential new strategies to treat PSC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6098983PMC
http://dx.doi.org/10.1016/j.jhep.2018.05.018DOI Listing

Publication Analysis

Top Keywords

liver injury
20
macrophages contribute
16
sclerosing cholangitis
16
macrophages psc
12
macrophage recruitment
12
liver
11
psc
10
macrophages
8
contribute pathogenesis
8
liver disease
8

Similar Publications

Human liver cell-based assays for the prediction of hepatic bile acid efflux transporter inhibition by drugs.

Expert Opin Drug Metab Toxicol

January 2025

Institut de R&D Servier, Paris-Saclay, F-91190 Gif-sur-Yvette, France.

Introduction: Drug-mediated inhibition of bile salt efflux transporters may cause liver injury. In vitro prediction of drug effects toward canalicular and/or sinusoidal efflux of bile salts from human hepatocytes is therefore a major issue, which can be addressed using liver cell-based assays.

Area Covered: This review, based on a thorough literature search in the scientific databases PubMed and Web of Science, provides key information about hepatic transporters implicated in bile salt efflux, the human liver cell models available for investigating functional inhibition of bile salt efflux, the different methodologies used for this purpose, and the modes of expression of the results.

View Article and Find Full Text PDF

[Research progress on the role of efferocytosis in liver diseases].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Central Laboratory, Chengdu University of TCM, School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, China.

Efferocytosis refers to the process of phagocytes engulfing and clearing the cells after programmed cell death. In recent years, an increasing number of studies have shown that the mechanisms of efferocytosis are closely related to drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, cholestatic liver diseases, metabolic-associated fatty liver disease, alcoholic liver disease, and other liver disorders. This review summarized the research progress on the role of efferocytosis in liver diseases, with the hope of providing new targets for the prevention and treatment of liver diseases.

View Article and Find Full Text PDF

Functional constipation is a common disorder of the gastrointestinal tract in children without specific treatment. Ziziphus jujuba has been used in traditional medicine for various diseases such as constipation. A safe and inexpensive treatment with few side effects can be used as an effective alternative to current medications.

View Article and Find Full Text PDF

Mitochondrial dysfunction in drug-induced hepatic steatosis: recent findings and current concept.

Clin Res Hepatol Gastroenterol

January 2025

INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, 35000 Rennes, France. Electronic address:

Mitochondrial activity is necessary for the maintenance of many liver functions. In particular, mitochondrial fatty acid oxidation (FAO) is required for energy production and lipid homeostasis. This key metabolic pathway is finely tuned by the mitochondrial respiratory chain (MRC) activity and different transcription factors such as peroxisome proliferator-activated receptor α (PPARα).

View Article and Find Full Text PDF

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Article Synopsis
  • COVID-19, caused by SARS-CoV-2, poses serious global health risks, including the potential for secondary liver injury related to metabolic enzyme changes.
  • This study explores how prior infection with SARS-CoV-2 affects alcohol-induced liver damage, using transgenic mice that express human ACE2.
  • Results showed that infected mice experienced worsened liver injury after alcohol consumption, with alterations in metabolic enzymes and increased levels of a toxic alcohol byproduct, indicating a complex interaction between COVID-19 and alcohol effects on the liver.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!