Objectives: To report the baseline results of a longitudinal psychosocial study that forms part of the IMPACT study, a multi-national investigation of targeted prostate cancer (PCa) screening among men with a known pathogenic germline mutation in the BRCA1 or BRCA2 genes.
Particpants And Methods: Men enrolled in the IMPACT study were invited to complete a questionnaire at collaborating sites prior to each annual screening visit. The questionnaire included sociodemographic characteristics and the following measures: the Hospital Anxiety and Depression Scale (HADS), Impact of Event Scale (IES), 36-item short-form health survey (SF-36), Memorial Anxiety Scale for Prostate Cancer, Cancer Worry Scale-Revised, risk perception and knowledge. The results of the baseline questionnaire are presented.
Results: A total of 432 men completed questionnaires: 98 and 160 had mutations in BRCA1 and BRCA2 genes, respectively, and 174 were controls (familial mutation negative). Participants' perception of PCa risk was influenced by genetic status. Knowledge levels were high and unrelated to genetic status. Mean scores for the HADS and SF-36 were within reported general population norms and mean IES scores were within normal range. IES mean intrusion and avoidance scores were significantly higher in BRCA1/BRCA2 carriers than in controls and were higher in men with increased PCa risk perception. At the multivariate level, risk perception contributed more significantly to variance in IES scores than genetic status.
Conclusion: This is the first study to report the psychosocial profile of men with BRCA1/BRCA2 mutations undergoing PCa screening. No clinically concerning levels of general or cancer-specific distress or poor quality of life were detected in the cohort as a whole. A small subset of participants reported higher levels of distress, suggesting the need for healthcare professionals offering PCa screening to identify these risk factors and offer additional information and support to men seeking PCa screening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378691 | PMC |
http://dx.doi.org/10.1111/bju.14412 | DOI Listing |
Radiol Imaging Cancer
January 2025
Department of Radiology, University Medical Center Groningen, Groningen, the Netherlands.
Purpose To validate a deep learning (DL) model for predicting the risk of prostate cancer (PCa) progression based on MRI and clinical parameters and compare it with established models. Materials and Methods This retrospective study included 1607 MRI scans of 1143 male patients (median age, 64 years; IQR, 59-68 years) undergoing MRI for suspicion of clinically significant PCa (csPCa) (International Society of Urological Pathology grade > 1) between January 2012 and May 2022 who were negative for csPCa at baseline MRI. A DL model was developed using baseline MRI and clinical parameters (age, prostate-specific antigen [PSA] level, PSA density, and prostate volume) to predict the time to PCa progression (defined as csPCa diagnosis at follow-up).
View Article and Find Full Text PDFHealthcare (Basel)
December 2024
Department of Computer Science, School of Arts, Humanities and Social Sciences, University of Roehampton, London SW15 5PH, UK.
: Diabetes is a metabolic disorder characterized by increased blood sugar levels. Early detection of diabetes could help individuals to manage and delay the progression of this disorder effectively. Machine learning (ML) methods are important in forecasting the progression and diagnosis of different medical problems with better accuracy.
View Article and Find Full Text PDFProstate cancer (PCa) has high prevalence rates in men and is a leading cause of cancer-related death. Transrectal (TR) biopsy has traditionally been the gold standard for diagnosis, but transperineal (TP) biopsy is increasingly favoured due to its lower infection risk. However, debate remains regarding which method has superior cancer detection rates.
View Article and Find Full Text PDFNeuroradiol J
January 2025
Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA.
This study evaluates the efficacy of deep learning models in identifying infarct tissue on computed tomography perfusion (CTP) scans from patients with acute ischemic stroke due to large vessel occlusion, specifically addressing the potential influence of varying noise reduction techniques implemented by different vendors. We analyzed CTP scans from 60 patients who underwent mechanical thrombectomy achieving a modified thrombolysis in cerebral infarction (mTICI) score of 2c or 3, ensuring minimal changes in the infarct core between the initial CTP and follow-up MR imaging. Noise reduction techniques, including principal component analysis (PCA), wavelet, non-local means (NLM), and a no denoising approach, were employed to create hemodynamic parameter maps.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Pathology, Faculty of Medicine, Shahed University, Tehran, Iran.
Background: Cytokeratins are intracellular proteins known as diagnostic biomarkers or prognostic factors for certain cancers. Cytokeratin 19 (CK-19) expression has been proven to have prognostic value for some cancers, but its relationship with others, such as prostate cancer (PCa), remains unclear. This systematic review article aimed to examine the relationship between CK-19 expression and prostate adenocarcinoma (PAC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!